
Chem 444 Problem Set 6 Due: Friday, October 31

1. A two-state system. Remarkably, the decomposition between system and bath (as well as our count-

ing tools with partition functions) work equally well in a quantum setting as in a classical setting. In

fact, you may even prefer thinking about partition functions for quantum mechanical objects because

an integral over all possible continuous classical microstates is replaced by a sum over quantized

possibilities. In this problem, we consider the simplest quantized problem: a two-state system.

(i) In the presence of a magnetic field, a 1H atom’s nuclear spin can adopt one of two states that we

call “up” or “down”. We orient our field so that the nuclear spin aligns with the down state’s nuclear

spin. The magnetic field splits the energetic degeneracy of the up and down states, as described by

the Zeeman effect. Let us call the ground state energy ǫ0 and the excited state energy ǫ0 + ǫ. The spin

can switch between up and down states by exchanging energy with a thermal bath at temperature T .

In terms of ǫ0, ǫ, T, and Boltzmann’s constant kB, what is the probability of the down state, pdown?

What is the probability of the up state, pup?

By the Boltzmann distribution, we know that p(E) ∝ e−βE , so we have

p↑ =
e−β(ǫ0+ǫ)

e−β(ǫ0) + e−β(ǫ0+ǫ)
=

e−βǫ

1 + e−βǫ
, p↓ =

e−βǫ0

e−β(ǫ0) + e−β(ǫ0+ǫ)
=

1

1 + e−βǫ
.

Notice that ǫ0 has dropped out of the probabilities—what’s important is the relative difference

between the energies, not the absolute energies themselves.

(ii) Plot the equilibrium probability of occupying the down (ground) state as a function of temperature.

Label θ ≡ ǫ/kB on the x-axis. Discuss the low-temperature and high-temperature limits of pdown.

What is the physical interpretation of θ?

As T → 0 and β → ∞, p↓ → 1—the thermal bath doesn’t have enough energy to excite these

protons into the higher-energy state. As T → ∞ and β → 0, p↓ → 1/2—here, the thermal

bath has so much energy that the minute energy difference between the two states is negligible,

so the states are essentially degenerate and occupied with equal probability.

θ represents a transition temperature between these two regimes. Imprecisely, it is the temper-
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ature at which a significant fraction of the protons can now access the higher-energy state.

(iii) Using your expressions for pup and pdown, calculate the expected energy 〈E〉 in terms of ǫ0, ǫ, kB
and T .

〈E〉 = E↑P↑ + E↓P↓ = ǫ0 +
e−βǫ

1 + e−βǫ
ǫ.

(iv) An alternative way to compute the expected energy is to compute

〈E〉 = −
∂ lnQ(β)

∂β
,

where Q(β) =
∑

ν e
−βE(ν) is the canonical partition function and β = 1/(kBT ). If this expression

does not look familiar, look back through your old homeworks and find where you showed that it is

true. The sum over ν includes all the microstates, but for the two-state spin system there are only two.

Give an explicit form for Q(β) then differentiate to confirm your answer to (iii).

In this two-state system, we simply have Q = e−βǫ0 + e−β(ǫ0+ǫ). Differentiating yields

〈E〉 = −
∂ lnQ

∂β
= −

∂

∂β
(−βǫ0 + ln(1 + e−βǫ) = ǫ0 +

e−βǫ

1 + e−βǫ
ǫ.

(v) Now assume there are N independent (non-interacting) spins. Compute Q(β,N) for the N -spin

system in terms of the 1-spin partition function Q(β) that you found in the previous part. Use Q(β,N)
to compute 〈E〉 for the N -spin system. How does it differ from your answer in (iv)?

Because the spins are independent, we have Q(β,N) = Q(β)N . Hence differentiating yields

〈E〉 = −
∂ lnQ(β,N)

∂β
= −N

∂ lnQ(β)

∂β
= N〈Eone spin〉.

(vi) Recall that our study of statistical mechanics started by asserting that there is a function S =
kB ln Ω. It would usually be awkward to directly count the number of states Ω, so we would like

to sometimes be able to compute S another way. We have shown that in the thermodynamic limit,

−βA = lnQ(β,N), where A = 〈E〉 − TS is the Helmholtz free energy. Use your answers to (e) to

compute S as a function of N, kB, ǫ, and T . Plot S/(NkB) as a function of T/θ. Briefly comment

on the low-temperature and high-temperature limits (i.e., what are the limits and can they be simply

explained on physical grounds?).
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Rearranging the given equations yields

S

kB

= β(〈E〉 −A) = β〈E〉+ lnQ(β,N)

= βN

(

ǫ0 +
e−βǫ

1 + e−βǫ
ǫ

)

− βNǫ0 +N ln(1 + e−βǫ)

= N

[

βǫe−βǫ

1 + e−βǫ
+ ln(1 + e−βǫ)

]

.

As T → 0 and β → ∞, we have S → 0. This is sensible: at low temperatures, all the protons

will be in the lowest-energy state, and there exists only one such microstate of this type. As

T → ∞ and β → 0, we have S → NkB ln 2. This too is sensible, based on our analysis of p↓
in (b). In this high-temperature limit, each proton has equal probability of being in either one

of the two states, so there are 2N microstates in all.

2. A harmonic oscillator. Consider a one-dimensional quantum harmonic oscillator, which has equally

spaced discrete energy levels: 1
2~ω,

3
2~ω,

5
2~ω . . .. We assume the harmonic oscillator is in contact

with a large thermal bath at temperature T .

(i) As in Problem 2, the canonical partition function is Q(β) =
∑

ν e
−βE(ν), but now ν has more than

two possibilities. In fact, there is an infinite number of possibilities. Use the fact that energy levels are

equally spaced to compute the partition function in terms of ~, ω, kB, and T . [Hint: a geometric series

can be summed exactly. Also, you can leave your answers in terms of exponential functions, but you

may find future parts of this problem to be easier if you simplify things in terms of the hyperbolic

cosecant function.]

The canonical partition function is given by Q =
∑∞

n=0 e
−βEn , where En = ~ω

(

1
2 + n

)

is

the energy of the nth level. We recognize that this sum is a geometric series.

Q = e−β~ω/2
∞
∑

n=0

(

e−β~ω
)n

=
e−β~ω/2

1− e−β~ω
.

Chem 444, Fall 2025 3



I asked for this as a function of T , not β, which is simple enough:

Q(T ) =
exp

(

− ~ω
2kBT

)

1− exp
(

− ~ω
kBT

) =
1

2
csch

(

~ω

2kBT

)

.

You might not have recognized that the expression could be rewritten compactly in terms of

the hyperbolic cosecant, which is fine. I’ve chosen to write it this way since it makes the

differentiation that much simpler. But you could get to all the right answers if you leave

everything in terms of the exponentials.

(ii) By differentiating Q appropriately, determine the average energy 〈E〉, which should also be a

function of T .

Notice that lnQ is a cumulant generating function, so

〈E〉 = −
∂ lnQ

∂β
=

~ω

2
coth

(

~ω

2kBT

)

.

Or in terms of the exponentials, this would be:

〈E〉 =
~ω

2

(

exp
(

~ω
2kBT

)

+ exp
(

− ~ω
2kBT

))

(

exp
(

~ω
2kBT

)

− exp
(

− ~ω
2kBT

))

It’s always a good idea to check that the limiting behavior agrees with what you’d expect.

When T approaches 0, you get 〈E〉 → ~ω/2, the ground state energy. That’s good! And when

T approaches, ∞, the average energy also diverges.

(iii) A common experiment is to measure how much energy must be put into a system to increase the

temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy

increase with increasing temperature:

C =
∂ 〈E〉

∂T
.

By writing 〈E〉 in terms of a derivative of lnQ, demonstrate that C is related to a second derivative of

lnQ. Use this observation to compute both the typical size of the energy fluctuations
〈

δE2
〉

and the

heat capacity C . Both of these quantities should be functions of the temperature.

The relationship between heat capacity and energy fluctuations is given by:

C =
∂ 〈E〉

∂T
=

∂ 〈E〉

∂β

∂β

∂T
= −

∂2 ln q

∂β2

(

−
1

kBT 2

)

=

〈

δE2
〉

kBT 2

Since we have the partition function q, we can take the two derivatives with respect to β to

explicitly compute the energy fluctuations.

〈

δE2
〉

=
∂2

∂β2
ln

(

1

2
csch

(

~ωβ

2

))

=
(~ω)2

4
csch2

(

~ω

2kBT

)

.
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You may have done this in terms of all of the exponentials, in which case you’d have arrived at

〈

δE2
〉

=





~ω

exp
(

~ω
2kBT

)

− exp
(

− ~ω
2kBT

)





2

.

The heat capacity C is just kBT
2 times this result for

〈

δE2
〉

.

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-

cillator but that the oscillations in the x, y, and z dimensions are independent. Then the single three-

dimensional harmonic oscillator will behave like three one-dimensional harmonic oscillators. What

will be the new values of 〈E〉,
〈

δE2
〉

, and C for the three-dimensional oscillator. [Hint: Don’t com-

pute more than you have to! Think about how the partition functions change when you incorporate

multiple independent components.]

The new cumulant generating function for energy will simply be 3 ln q, with one factor of ln q
coming from each degree of freedom. As a result, the first two cumulants, 〈E〉 and

〈

δE2
〉

,

both increase by a factor of 3. Since C equals the second cumulant time kBT
2, it will also

increase by a factor of 3.

〈E〉 =
3~ω

2
coth

(

~ω

2kBT

)

〈

δE2
〉

=
3(~ω)2

4
csch2

(

~ω

2kBT

)

C =
3kBT

2(~ω)2

4
csch2

(

~ω

2kBT

)

(v) Repeat your logic from (iv) to determine C for N three-dimensional harmonic oscillators. Ein-

stein considered this as a model for vibrations of the positions of N atoms around their equilibrium

positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be

handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how

C varied with temperature T , Einstein argued that one could infer microscopic information about the

nature of the vibrations. Pretty cool!

The same logic applies, but now 3 becomes 3N .

〈E〉 =
3N~ω

2
coth

(

~ω

2kBT

)

〈

δE2
〉

=
3N(~ω)2

4
csch2

(

~ω

2kBT

)

C =
3NkBT

2(~ω)2

4
csch2

(

~ω

2kBT

)

3. Practice connecting partition functions to thermodynamic potentials. Consider an isothermal-

isobaric ensemble of microstates in which both energy and volume are allowed to fluctuate but the

number of particles N is fixed.
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(i) Following our development of the canonical ensemble in lecture, determine the probability distri-

bution P (ν) and partition function ζ(β, βp,N) for this ensemble.

Now we let the system exchange energy and volume with the surroundings:

ET = E(ν) + EB(νB) and VT = V (ν) + VB(νB).

The probability of microstate ν is thus determined from the multiplicity of the bath:

P (ν) ∝ ΩB(ET − E(ν), VT − V (ν)).

By Taylor expanding lnP (ν) for small E(ν) and small V (ν), we get

lnP (ν) = const − E

(

∂ ln ΩB

∂EB

)

NB,VB

− V

(

∂ ln ΩB

∂VB

)

EB,NB

= const − βE − βpV.

Hence

P (ν) ∝ e−βE(ν)−βpV (ν).

This distribution is normalized by the partition function

ζ(β, βp,N) =
∑

ν

e−βE(ν)−βpV (ν).

(ii) By grouping together microstates with the same volume, the isothermal-isobaric partition function

can be written in the form

ζ =
∑

V

(. . .) (1)

Identify the summand that belongs in this expression.

ζ(β, βp,N) =
∑

ν

e−βE(ν)−βpV (ν)

=
∑

V

e−βpV
∑

ν with V (ν)=V

e−βE(ν)

=
∑

V

e−βpV Q(N,V, β)

(iii) For a macroscopic system, the sum in Eq. (1) is overwhelmingly dominated by the contribution

from a single value V ∗ of the volume. Exploiting this fact, determine a relationship between ln ζ and

basic thermodynamic quantities. Could your answer have been easily anticipated? Explain.
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ln ζ(β, βp,N) = ln
∑

V

e−βpV Q(N,V, β)

≈ ln e−βpV ∗

Q(N,V ∗, β)

= −βpV ∗ + lnQ(N,V ∗, β)

= −βpV ∗ − βA(N,V ∗, β)

= −β(pV ∗ +A(N,V ∗, β))

= −βG(β, βp,N),

where we have used lnQ(N,V, β) = −βA(N,V, β). Notice that the log of the partition

function ζ is −β times the free energy for the ensemble, in this case the Gibbs free energy since

we are holding p, T, and N fixed. The pattern is general, so the result could be anticipated.

(iv) Compute the derivative (∂ ln ζ/∂(βp))β,N . Using this result, verify the relationship you deter-

mined in part (iii).

(

∂ ln ζ

∂(βp)

)

β,N

=
∂

∂(βp)
ln

[

∑

V

Q(N,V, β)e−βpV

]

= −
1

ζ

∑

ν

V (ν)e−βpV (ν)−βE(ν)

= −〈V 〉 .

Note that dG = V dp− SdT + µdN , so

V =

(

∂G

∂p

)

T,N

= −kBT

(

∂ ln ζ

∂p

)

T,N

= −kBT (−β 〈V 〉) = 〈V 〉 .

Hence the equality in (iii) is consistent.

(v) Compute the derivative (∂2 ln ζ/∂(βp)2)β,N . Using this result, derive a relationship between

mean square volume fluctuations 〈δV 2〉 (where δV = V − 〈V 〉) and the isothermal compressibility

κT = −V −1(∂V/∂p)T,N .

First note that

(

∂2 ln ζ

∂(βp)2

)

β,N

=
〈

δV 2
〉

because ln ζ is a cumulant generating function for V . Like we did for studying heat capacity,

we can relate this second derivative to a “susceptibility” that records how susceptible the mean

is to change in response to a change in the intensive variable. In this case that susceptibility is

the isothermal compressibility, which records by how much the volume changes in response to
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a change in pressure.

〈

δV 2
〉

=
∂

∂βp

(

∂ ln ζ

∂(βp)

)

β,N

= −

(

∂

∂βp
〈V 〉

)

β,N

= −kBT

(

∂ 〈V 〉

∂p

)

β,N

= kBTV κT .

Thus

κT =
β

V

〈

δV 2
〉

.
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