Chem 444 Problem Set 6 Due: Friday, October 31 ()

1. A two-state system. Remarkably, the decomposition between system and bath (as well as our count-

ing tools with partition functions) work equally well in a quantum setting as in a classical setting. In
fact, you may even prefer thinking about partition functions for quantum mechanical objects because
an integral over all possible continuous classical microstates is replaced by a sum over quantized
possibilities. In this problem, we consider the simplest quantized problem: a two-state system.

(i) In the presence of a magnetic field, a "H atom’s nuclear spin can adopt one of two states that we
call “up” or “down”. We orient our field so that the nuclear spin aligns with the down state’s nuclear
spin. The magnetic field splits the energetic degeneracy of the up and down states, as described by
the Zeeman effect. Let us call the ground state energy ¢y and the excited state energy ¢y + €. The spin
can switch between up and down states by exchanging energy with a thermal bath at temperature 7.
In terms of ¢, €, T, and Boltzmann’s constant kg, what is the probability of the down state, Pgown?
What is the probability of the up state, pyp?

By the Boltzmann distribution, we know that p(E) o< e ?F, so we have

e—Bleo+e) e Be e~Peo 1
PI= Co80) e Bleota ~ 14 eBe’ PVT gmBleo) 4 - Bleotd 14 e Be

Notice that €y has dropped out of the probabilities—what’s important is the relative difference
between the energies, not the absolute energies themselves.

. J

(i) Plot the equilibrium probability of occupying the down (ground) state as a function of temperature.
Label # = €/kp on the x-axis. Discuss the low-temperature and high-temperature limits of pgown.
What is the physical interpretation of 6?

AsT — Oand 3 — oo, py — 1—the thermal bath doesn’t have enough energy to excite these
protons into the higher-energy state. As 7" — oo and f — 0, p; — 1/2—here, the thermal
bath has so much energy that the minute energy difference between the two states is negligible,
so the states are essentially degenerate and occupied with equal probability.

0 represents a transition temperature between these two regimes. Imprecisely, it is the temper-
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[ ature at which a significant fraction of the protons can now access the higher-energy state. ]

(iii) Using your expressions for p,p, and pgown. calculate the expected energy (E) in terms of €, €, kg
and T'.

e Pe

(iv) An alternative way to compute the expected energy is to compute

)

R

where Q(3) = 3, e #F() is the canonical partition function and 3 = 1/(kgT). If this expression
does not look familiar, look back through your old homeworks and find where you showed that it is
true. The sum over v includes all the microstates, but for the two-state spin system there are only two.
Give an explicit form for () then differentiate to confirm your answer to (iii).

In this two-state system, we simply have Q = e=#% 4 ¢=# (cote), Differentiating yields
e P

0ln (@ 0
- = — e
14 e Pe

W= ~ a3

(—Beo +In(1 +e7P€) = ¢ +

(v) Now assume there are N independent (non-interacting) spins. Compute Q(3, N) for the N-spin
system in terms of the 1-spin partition function () that you found in the previous part. Use Q(3, N)
to compute (F) for the N-spin system. How does it differ from your answer in (iv)?

Because the spins are independent, we have Q(3, N) = Q(3)". Hence differentiating yields

_OmQBN) _ _OWmQB) _ e

(E) = a8 a5

(vi) Recall that our study of statistical mechanics started by asserting that there is a function S =
kg In Q. It would usually be awkward to directly count the number of states €2, so we would like
to sometimes be able to compute S another way. We have shown that in the thermodynamic limit,
—BA=InQ(B,N), where A = (E) — T'S is the Helmholtz free energy. Use your answers to (e) to
compute S as a function of N, kg, €, and T. Plot S/(Nkg) as a function of 7'/6. Briefly comment
on the low-temperature and high-temperature limits (i.e., what are the limits and can they be simply
explained on physical grounds?).
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Rearranging the given equations yields

S

— = B((E) - 4) = B(E) + m Q(B, N)
B
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AsT — 0and S — oo, we have S — 0. This is sensible: at low temperatures, all the protons
will be in the lowest-energy state, and there exists only one such microstate of this type. As
T — oo and 3 — 0, we have S — Nkg In 2. This too is sensible, based on our analysis of p|
in (b). In this high-temperature limit, each proton has equal probability of being in either one
of the two states, so there are 2/ microstates in all.

2. A harmonic oscillator. Consider a one-dimensional quantum harmonic oscillator, which has equally
spaced discrete energy levels: %hw, %hw, ghw .... We assume the harmonic oscillator is in contact
with a large thermal bath at temperature 7.

(i) As in Problem 2, the canonical partition function is Q(8) = >_,, e #F (), but now v has more than
two possibilities. In fact, there is an infinite number of possibilities. Use the fact that energy levels are
equally spaced to compute the partition function in terms of 7, w, kg, and T'. [Hint: a geometric series
can be summed exactly. Also, you can leave your answers in terms of exponential functions, but you
may find future parts of this problem to be easier if you simplify things in terms of the hyperbolic
cosecant function. ]

The canonical partition function is given by Q@ = > e PEn where E, = hw (% + n) is
the energy of the n'" level. We recognize that this sum is a geometric series.

0o —Bhw/2
_—Bhw/2 —Brw\" _ €
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I asked for this as a function of 7', not 3, which is simple enough:

Q(T) = o (—,ﬂ%) = §csch

You might not have recognized that the expression could be rewritten compactly in terms of
the hyperbolic cosecant, which is fine. I’ve chosen to write it this way since it makes the
differentiation that much simpler. But you could get to all the right answers if you leave
everything in terms of the exponentials.

exp (—of7) 1 (ﬂ)

\

(ii) By differentiating () appropriately, determine the average energy (E), which should also be a
function of T'.

~

N

Notice that In () is a cumulant generating function, so

. 0mQ  w hw
(E) = — 8 2 coth (QkBT)'

Or in terms of the exponentials, this would be:

oy (o2 () + o )

? (o (altr) — e (~otir))

It’s always a good idea to check that the limiting behavior agrees with what you’d expect.
When T approaches 0, you get (E) — hw/2, the ground state energy. That’s good! And when
T approaches, co, the average energy also diverges.

\

(iii) A common experiment is to measure how much energy must be put into a system to increase the
temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy
increase with increasing temperature:

9 (E)

T

By writing () in terms of a derivative of In (), demonstrate that C is related to a second derivative of
In Q. Use this observation to compute both the typical size of the energy fluctuations <5E2> and the
heat capacity C. Both of these quantities should be functions of the temperature.

r

C =

The relationship between heat capacity and energy fluctuations is given by:

0(E) 0(E)oB _821nq (_ 1 ) _ <5E2>
kpT? kpT?

T 9T 98 T 9p?

Since we have the partition function ¢, we can take the two derivatives with respect to 3 to
explicitly compute the energy fluctuations.

0? 1 hw hw)? hw
<5E2> = 8—ﬁ21n <§csch <T>> = ( 4) csch? (2kBT> .

Chem 444, Fall 2025 4




You may have done this in terms of all of the exponentials, in which case you’d have arrived at

2
hew

hw hw
&q0 (ZkBT) = @90 <_2kBT)

The heat capacity C is just kg™ times this result for (§E?).

. J

(852) =

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-
cillator but that the oscillations in the x, y, and z dimensions are independent. Then the single three-
dimensional harmonic oscillator will behave like three one-dimensional harmonic oscillators. What
will be the new values of (£), <5E2>, and C for the three-dimensional oscillator. [Hint: Don’t com-
pute more than you have to! Think about how the partition functions change when you incorporate
multiple independent components. ]

The new cumulant generating function for energy will simply be 3 In ¢, with one factor of In ¢
coming from each degree of freedom. As a result, the first two cumulants, (F) and <5E2>,
both increase by a factor of 3. Since C' equals the second cumulant time kg7, it will also
increase by a factor of 3.

2 2T
3(Aw)? hw
2 2
(OF) = = —csch <2kBT>
| BkeT(hw)?
¢= 4 D\ TpT

. J

(v) Repeat your logic from (iv) to determine C for N three-dimensional harmonic oscillators. Ein-
stein considered this as a model for vibrations of the positions of N atoms around their equilibrium
positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be
handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how
C varied with temperature 7', Einstein argued that one could infer microscopic information about the
nature of the vibrations. Pretty cool!

s )

The same logic applies, but now 3 becomes 3NV.

() = 255 coth (57 )

2 2kgT
3N (hw)? hw
2\ _ SN(w)” . o
<5E > = 1 csch <2kBT>
_ 3NkgT?%(hw)®> o ( hw
C= fcsch SkpT

\.

3. Practice connecting partition functions to thermodynamic potentials. Consider an isothermal-
isobaric ensemble of microstates in which both energy and volume are allowed to fluctuate but the
number of particles NV is fixed.

Chem 444, Fall 2025 5



(i) Following our development of the canonical ensemble in lecture, determine the probability distri-
bution P(v) and partition function {(/3, Bp, N) for this ensemble.

s "

Now we let the system exchange energy and volume with the surroundings:
Er=E(v)+ Eg(vg) and Vi =V(v)+ Vg(vp).

The probability of microstate v is thus determined from the multiplicity of the bath:
P(v) x Qp(ET — E(v), Vo — V(v)).

By Taylor expanding In P(v) for small E(v) and small V(v), we get

Oln Q) O0ln Q)
lnP(y):const—E< - B) —V( - B) = const — BE — BpV.
IEp Ng,Vi Vi Ep,Np

Hence
P(v) « e PEM—BrV (),

This distribution is normalized by the partition function

¢(B,Bp, N) = Z e BEW)—BpV(v)

14

(i1) By grouping together microstates with the same volume, the isothermal-isobaric partition function
can be written in the form

¢=> () (1)
\4

Identify the summand that belongs in this expression.

a N

¢(8, Bp, N Ze—ﬂE —BpV (v)

:Ze—,@pv 3 e PEw
1%

v with V(v)=V

=> e PYQ(N,V,8)
—

(iii) For a macroscopic system, the sum in Eq. (1) is overwhelmingly dominated by the contribution
from a single value V* of the volume. Exploiting this fact, determine a relationship between In ¢ and
basic thermodynamic quantities. Could your answer have been easily anticipated? Explain.
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In¢(B,8p,N) =In > e PPVQ(N,V, )
14

~Ilne PPV Q(N,V*, B)
=—BpV*+InQ(N,V*,j)
= —ppV* — BA(N,V*,B)
=—B(EV" + A(N,V*, B))
= —BG(8, Bp, N),
where we have used In Q(N,V,3) = —BA(N,V, ). Notice that the log of the partition

function ( is — /3 times the free energy for the ensemble, in this case the Gibbs free energy since
we are holding p, T, and N fixed. The pattern is general, so the result could be anticipated.

(iv) Compute the derivative (01n(/0(8p))s n. Using this result, verify the relationship you deter-
mined in part (iii).

~

0ln¢ _ 0 0 s
(8<5p>>5,N 560 | [; A7) ]
_ _% SV () BV I-85@)
— (V).

Note that dG = Vdp — SdT" + pdN, so

Hence the equality in (iii) is consistent.

(v) Compute the derivative (92In¢/d(8p)?)sn. Using this result, derive a relationship between
mean square volume fluctuations (§V2) (where 6V = V — (V') and the isothermal compressibility

T = —V_l(a‘//ap)T,N.

First note that

0?In¢ )
0%
<6 (Bp)? 8,N < >
because In ¢ is a cumulant generating function for V. Like we did for studying heat capacity,
we can relate this second derivative to a “susceptibility” that records how susceptible the mean

is to change in response to a change in the intensive variable. In this case that susceptibility is
the isothermal compressibility, which records by how much the volume changes in response to
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a change in pressure.

(

(6V?).

0

0Bp

dln(

2\ __
V%) = 385 \atap)

Thus

<l

R =

b
57]\/7 d9B8p
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