
Chem 444 Problem Set 5 Due: Friday, October 24

1. Pulling on a Polymer. Consider a model of a classical polymer in three dimensions, which consists

of N + 1 monomers connected together in a linear chain by N harmonic springs. We use Ri to

denote the position of the ith monomer. The energy of the polymer has kinetic and potential energy

contributions, which depend on the positions and velocities of every monomer:
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where m is the mass of a monomer, Ṙi is the velocity of monomer i, and the strength of the spring

connecting polymers is k with units of energy per length squared. The polymer is immersed in a

solution which has temperature T , so the energy of the polymer can fluctuate. The first part of the

problem concerns this free polymer where “free” indicates that we are not applying extra forces to

hold the endpoints of the polymer fixed in space.

Later in the problem we will imagine fixing monomer 0 at the origin by, for example, attaching it to a

glass bead and holding that bead at the origin with a pipette. Monomer N will be fixed at Lx̂, which

could be physically realized by attaching that monomer to a different glass bead and moving the bead

with an optical trap. You will not need to know anything about how such an optical trap functions,

only that it is possible to move the two endpoints of the polymer relative to each other so that they are

separated by a distance L.

(i) Compute 〈E〉 as a function of kB, T , and N . Your final answer should not depend on k or on m.

(The result is a realization of the equipartition theorem.)

Hint: To do this problem more efficiently, you may note that every bond between monomers is

independent of the other bonds. The average energy in any one of these bonds can be expressed

as a Gaussian integral,
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where R is the vector (in three dimensions!) pointing from one monomer to the next and

β = 1/kBT . Similarly, the average kinetic energy of a single monomer is the same for all

monomers and is given by
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where Ṙ is the velocity of the monomer.

First we can compute the average energy stored in a single bond
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The expectation value of R2
single bond is something we’ve computed before with Gaussian inte-

grals. Recall that in 3d

〈

R2
〉

=

(

1

2πσ2

)3/2 ∫

dR R2e−
R2

2σ2 = 3σ2.

Comparing this integral with the ones we have in this problem, we see that σ2 = 1
βk . Hence

〈

R2
single bond

〉

= 3kBT/k. Because the energy in the bond is k/2 times this average distance

squared, we find
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2
.

In other words, you get kBT/2 for every degree of freedom. That same result applies to the

kinetic energy. Repeating the exact same types of Gaussian integrals but with σ2 = 1/βm,

you would find
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In total, the system has N bonds and N+1 monomers, so the total number of quadratic degrees

of freedom is 3(2N + 1), giving

〈E〉 = (2N + 1)

(

3kBT

2

)

(ii) Let us define R0→N to be the vector from monomer 0 to monomer N . Still talking about the free

polymer, what is the ratio of probability densities P (R0→N = Lx̂)/P (R0→N = 0)? In other words,

how much less likely is it to find the stretched out free polymer than the compact one? Express your

answer in terms of L, β, and N . Do the velocities matter? Why or why not? Hint: you are encouraged

to make use of anything you learned in Problem Set 3 without having to rederive it here.

By doing Gaussian integrals, you should be able to figure out that the probability distribution

for the vector R separating endpoints of a polymer with N bonds is
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where
〈
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= ℓ2. In the previous problem we saw
〈
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= 3kBT/k, so we

must replace ℓ2 by 3kBT/k. Hence
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The prefactor cancels when we compare P (R0→N = Lx̂) to P (R0→N = 0):

P (L)

P (0)
= exp

(

−
βkL2

2N

)

.

The velocities do not matter because they fluctuate independently from the positions.

(iii) The polymer prefers to be folded up because there are fewer elongated configurations. Suppose

the polymer starts out with both monomers 0 and N at the origin. What is the reversible work required

for the optical trap to slowly move monomer N a distance L away, while keeping monomer 0 fixed at

the origin?

Wrev = −kBT ln
P (L)

P (0)
= −kBT

(

−
βkL2

2N

)

=
kL2

2N
.

2. Reversible work simulations.

I have written a simulation of the polymer in Problem 1 being pulled apart at a finite rate (so not

necessarily reversibly). You can run the simulation on this website:

http://gingrich.chem.northwestern.edu/teaching/polymer/gaussianchain.html

Each time you run the simulation you get a trajectory of the chain of harmonically bound nearest

neighbors beads, with velocities of each bead assigned at the start of each trajectory from a Maxwell-

Boltzmann distribution. Each bead of the polymer experiences forces from the neighboring beads,

trying to pull the neighbors closer together, but it also feels random “kicks” from the environment.

These kicks are meant to mimic the forces from molecules in a fixed-temperature solvent colliding

with the polymer. In the simulation, the solvent is not explicitly simulated, rather, at each step of the

polymer’s dynamics, a random Gaussian number is drawn by the computer to represent the extra force

a monomer feels from the effect of the solvent. Finally, the endpoint of the polymer experiences an

external force that we apply to force the polymer to spread out at a fixed stretching rate. This applied

force is measured and plotted in the top right of the screen. When the applied force is integrated,

we compute the total work exerted by the external force, and this accumulated work is plotted in the

bottom right of the screen.

If you slow down the pulling rate, you will see that the total work to stretch out the chain matches the

reversible work.

(i) First consider the case of an infinitesimally slow pulling rate. Compute the average force that must

be applied on the end monomer as a function of k, L, and N . This should follow from your answer to

Problem 1, Part (iii).

Note that the average force is a function of the end-to-end length l. Let us write this mean

force as f(l). Integrating the mean force over the distance will give the work:

W (L) =

∫ L

0
dl f(l).
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Taking a derivative of W with respect to L thus yields

f(L) =
∂W

∂L
=

kL

N
.

(ii) Use the provided simulation, starting with N = 20 beads and a pulling rate of 0.1 (in reduced

units where β = 1, l = 1, and bead mass m = 1). Then try a pulling rate of 0.01 and a pulling rate of

0.001. Observe that for very slow pulling the total work is very close to the reversible work. Notice

also that the mean force fluctuates around the correct average value that you found in (i). But the

fluctuations in the measured force are quite large, even at slow pulling rates. Explain why the force

fluctuations do not decrease for slow pulling rates even though the work fluctuations do.

The force fluctuations are quite large even for slow pulling, while the work fluctuations are low

when the pulling rate is low. The origin of the force fluctuations is that the particular structure

of the polymer can radically change the forces felt at the endpoint. If, for example, the second-

to-last bead ends up to the right of the final bead, it will pull with a negative force. Even when

the pulling rate is very slow, these less-typical polymer configurations can be explored. The

integral of these forces over distance, however, becomes very deterministic for slow pulling

rates. In this case, the work being performed at a separation of L is found by averaging over

the fluctuating forces times a distance element. In the case of very slow pulling, the entire

spectrum of possible force measurements are made and averaged over before the endpoints

are appreciable spread further. The subsequent averaging over many polymer configurations

makes the work fluctuations very small.

3. A perpetual motion machine?! Your friend at the University of Chicago has come up with a brilliant

idea. When he played with the simulation, he set N = 15 and pulled with a rate of 0.1 (in the reduced

units). He observed that sometimes he gets negative work by stretching the polymer out. In other

words, he expected to have to do work to pull the polymer apart, but sometimes the polymer did work

on him. Your friend is super excited because he thinks he can build some sort of DNA/laser tweezer

machine that stretches and unstretches a strand of DNA and gets work out in the process. Use the

simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/polymer/cyclicworkdistribution.html

to help you evaluate his plan.

(i) During a single cycle, will the UChicago scientist ever extract work from the system (the measured

work is negative)?

Yes, sometimes fluctuations will yield negative values of work!

(ii) Will the average extracted work ever be negative? To answer, compute the average work 〈W 〉 for

pulling rates of 0.05, 0.1,, and 0.2. You will want to check “Repeat Pulling to Collect Work Statistics”

then click restart to automatically generate statistics of the pulling experiments. Make sure you run

the program long enough for the values of 〈W 〉 to converge. What do you notice about how the

distribution of measured work values depends on the pulling rate? Will there be a pulling rate so that

your friend’s machine will reliably extract work and make him billions of dollars?
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No, it looks like the average work will never be less than zero. It seems my friend is out of

luck because he’s never going to find a pulling rate that will yield a negative work on average.

The average work decreases as the pulling rate slows down. Additionally, the breadth of the

distribution decreases with slower pulling rates.

(iii) Based upon the time-reversibility of dynamics (i.e., Newton’s laws look the same forward as they

do backwards), it can be shown that the probability of observing a value of work, W , over one of the

cycles is related to the probability of measuring −W by

P (W )

P (−W )
= eβW . (1)

(This formula is a special case of the Crooks fluctuation theorem, which we will discuss further in the

next problem.) At a single pulling rate, run the simulation long enough to generate a smooth work

probability distribution. Once the distribution has converged use the raw data provided below the

plot to confirm that the probability of positive and negative values of work are related as predicted by

Equation (1). (Agreement will be good but not perfect only because of finite statistics and because

histogram bin sizes analyzed in the applet are fairly wide.) In the reduced units of the simulations,

β = 1.

Here is a plot of the work distribution, collected by pulling a polymer with 15 beads at a rate

of 0.1 (in the reduced units of the simulation).

I have also plotted lnP (W ) − lnP (−W ) for all positive W and compared that with the line

βW (remember β = 1), to see that Equation (1) appears to be satisfied (at least for the values

of W that are well-sampled. There are not many samples with large negative values of W , so

those points should have big error bars.
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(iv) The average work from Part (ii) can be considered to be an average over the work distribution

function, P (W ).

〈W 〉 =

∫

∞

−∞

dW WP (W )

Show that Equation (1) implies that your answer to Part (ii) must be positive.

〈W 〉 =

∫

∞

−∞

dW WP (W )

=

∫

∞

0
dW WP (W ) +

∫ 0

−∞

dW WP (W )

=

∫

∞

0
dW (WP (W )−WP (−W ))

=

∫

∞

0
dW W (P (W )− P (−W ))

=

∫

∞

0
dW W

(

P (W )− P (W )e−βW
)

=

∫

∞

0
dW WP (W )

(

1− e−βW
)

≥ 0,

where the final step follows from noticing that W is positive for every term in the sum, P (W )
is positive since it’s a probability, and the term in parentheses also must be positive for W > 0.

(v) Beginning with the fact that P (W ) is normalized, show that 1 =
〈

e−βW
〉

. The average in this

equation is over all possible values of work, which means averaging over all of the possible non-

equilibrium pulling experiments.
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Note that

1 =

∫

∞

−∞

dWP (W ) =

∫

∞

−∞

dWP (−W )eβW

=

∫

∞

−∞

dW ′P (W ′)e−βW ′

=

∫

∞

−∞

dWP (W )e−βW =
〈

e−βW
〉

(vi) This average of the exponential is computed in the simulation and reported on the screen. Note

that it converges to one, but the convergence is slow. Comment on why convergence is so slow. [Hint:

Think about how probable it is to observe measurements that contribute the most to the average.]

The average
〈

e−βW
〉

is a weighted average. You collect a bunch of samples of work, let’s call

them W1,W2, . . . Wn. You then average over these measurements, giving each measurement

a weight of e−βWi . That means a very negative value of work carries a huge weight (in fact an

exponentially big weight) while the positive values of work carry exponentially small weights.

But the negative values of work are also much more rare than the positive ones. So the running

average will be strongly influenced by the rare occurances when a very negative value of work

is measured. The running average cannot really be converged until the negative work tail of

the distribution becomes well estimated.

4. Equilibrium free energies from nonequilibrium measurements. In the previous problem, you

considered a cyclic process in which the polymer endpoints returned to their original positions at the

end of each run. If the reversible work between the starting and ending configurations is not zero, the

general form of the Crooks fluctuation theorem applies:

PF(W ) = PR(−W )eβWd . (2)

Here, Wd = W − Wrev is the extra work we do on top of the reversible work. PF(W ) refers to

the probability of measuring a value W when pulling the polymer. PR(−W ) is the probability of

measuring a value of −W when pushing the endpoints of the polymer back to where they started. (F

stands for forward process, R for reversed.) In experiments with DNA folding it is important to know

the reversible work for unfolding a piece of DNA, but we cannot pull the DNA slowly enough to

unfold the polymer reversibly. Averaging the work performed during a laser tweezing experiment is a

bad estimate for Wrev because 〈W 〉 6= Wrev. Notice that the Crooks fluctuation theorem establishes

that the difference in statistics between forward and backward processes – the nature of time’s arrow

– is determined entirely by value of the dissipated work, Wd.

Repeat the logic of Problem 3(v) to write down an expression for Wrev in terms of the average of some

quantity you could measure in the pulling experiments. [Hint: PR(W ) is a normalized probability

distribution.]

You can check that this gives a good estimate for Wrev with using the simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/polymer/workdistribution.html.

With the Crooks fluctuation theorem, therefore, you have a way to extract measurements that tell us

about equilibrium systems (Wrev) from experiments that are not even close to equilibrium!
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1 = 〈1〉R

=

∫

∞

−∞

dW PF(−W )e−β(−W−Wrev)

= eβWrev

∫

∞

−∞

dW PF(−W )eβW

= eβWrev

∫

∞

−∞

dW PF(W )e−βW

= eβWrev

〈

e−βW
〉

F
.

Hence

e−βWrev =
〈

e−βW
〉

.
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