
Chem 444 Problem Set 4 Due: Friday, October 17

1. The Helmholtz free energy and the canonical partition function. In lecture I showed that in a

macroscopic system (N ≫ 1), the Helmholtz free energy A can be equated with the logarithm of the

canonical partition function Q:

βA(N,V, T ) = − lnQ(N,V, T ).

This problem develops a different (friendlier?) way to show that connection between macroscopic

thermodynamics and statistical mechanics.

(i) Start with the microscopic picture. Each microstate ν has energy E(ν), so the canonical partition

function is

Q(N,V, T ) =
∑

ν consistent with N,V

e−E(ν)/kBT .

Show that

(
∂ lnQ

∂β

)

V,N

= −〈E〉 .

(
∂ lnQ

∂β

)

V,N

=
1

Q

(
∂Q

∂β

)

V,N

= −
1

Q

∑

ν consistent with N,V

E(ν)e−E(ν)/kBT

= −
∑

ν consistent with N,V

E(ν)P (ν)

= −〈E〉 .

(ii) Now let’s think about the thermodynamic picture. Apply the chain rule to demonstrate that

(
∂(−βA)

∂β

)

V,N

= −E.

Chem 444, Fall 2025 1



(
∂(−βA)

∂β

)

V,N

= −A− β

(
∂A

∂β

)

V,N

= −A− β

(
∂T

∂β

)

V,N

(
∂A

∂T

)

V,N

= −A+ β(kBT
2)

(
∂A

∂T

)

V,N

= −A− TS

= −E.

(iii) In the thermodynamic limit (N → ∞), we replace 〈E〉 by E, which we now take to be a

deterministic quantity. Hence in that limit, the derivative of lnQ with respect to β is exactly the same

as the derivative of −βA with respect to β. Conclude that it must be the case that in the large system

size limit −βA = lnQ+C , where C is some constant that does not depend on β. Why do you think

we suppressed the constant in lecture?

We have equated the derivatives. If we integrate both sides with respect to β then we get

βA = − lnQ+ C

where C is a constant of integration. We consider the low-temperature limit of both sides

lim
T→0

βA = lim
T→0

E + TS

kBT
= βEground

since limT→0 S = 0. Similarly,

lim
T→0

lnQ+ C = − ln e−βEground + C = βEground + C.

For the left- and right-hand sides to be equal in the low temperature limit, we must set the

integration constant C to zero.

2. Practice with Legendre transforms and Maxwell relations. In class we discussed how the Helmholtz

free energy could be constructed as A = E − TS to yield a “thermodynamic potential” which is a

natural function of T , V , and N . This is to be contrasted with the first thermodynamic potential we

introduced: S, a function of E, V , and N . Notice that the transformation passing from S to A is

a lot like the transition from the microcanonical (constant E) to canonical (constant T ) ensemble, a

similarity which is very much not an accident. In that transformation from microcanonical to canon-

ical we were motivated to study an open system which had a fluctuating energy since energy was

exchanged with a very large bath. Suppose we have a system which, through interactions with the

outside environment, has a fluctuating energy and a fluctuating volume.

(i) Show that the Gibbs free energy, G = E − TS + pV , is a thermodynamic potential which is

naturally a function of T , p, and N by writing out an expression for dG in terms of dT , dp, and dN .
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Recall from lecture that dE = TdS+µdN−pdV . Substituting this in for dE in the following

equation, observe that

dG = dE − d(TS) + d(pV ) = TdS − pdV + µdN − TdS − SdT + pdV + V dp

= −SdT + V dp+ µdN

gives a differential in terms of dT , dp and dN , so G is a natural function of T , p, and N .

(ii) You have no doubt come across the Gibbs free energy in a chemistry class when discussing whether

or not a chemical reaction would occur spontaneously. Why did you focus on the Gibbs free energy

and not the Helmholtz free energy?

Free energies help us predict what will occur spontaneously. Namely, systems tend to evolve

in a manner that minimizes the free energy. The applicable free energy, however, depends

on the macroscopic constraints that we impose (the choice of ensemble). For example, when

we have fixed N,V, and E, we saw that the expected behavior was that which increased en-

tropy S (entropy maximization could equivalently be thought of as minimizing −S). That

simple principle of entropy maximation lets us predict the most likely macrostates if our sys-

tem is truly unable to exchange particles, energy, or volume with an outside environment, but

if the system can interact with an outside environment we must also weigh the impact on the

environment’s entropy. That’s what we did when we studied the canonical ensemble and con-

structed the associated Helmholtz free energy. We saw that the system didn’t want to merely

minimize −S, it now wanted to minimize the function E − TS. The first term came from

the bath penalizing situations when the system had high entropy. The second term was like

the original microcanonical minimization of −S (T is a fixed constant in the microcanonical

ensemble). If, however, the system can also exchange volume with the environment, then we

should work in an ensemble that holds N , T , and p fixed. In that case the free energy whose

minimization predicts the equilibrated behavior is the one which is a natural function of N ,

T , and p: the Gibbs free energy. In chemistry, lots of experiments happen in a vessel that is

not enclosed, so the volume of the solution can swell or contract. These constant-pressure,

constant-temperature, fixed particle concentration experiments are therefore described by the

Gibbs, not the Helmholtz, free energy.

(iii) From multivariable calculus you should have seen that the “mixed partial derivatives” of a multi-

variable function are equal. For example, let f(x, y) be a function of x and y such that

df =

(
∂f

∂x

)

y

dx+

(
∂f

∂y

)

x

dy.

The order of differentiation with respect to both x and y does not matter:

(

∂

∂y

(
∂f

∂x

)

y

)

x

=

(
∂

∂x

(
∂f

∂y

)

x

)

y

=
∂2f

∂x∂y
.

Use this fact and your expression for dG in (i) to relate (∂S/∂p)T,N to a partial derivative involving

volume and temperature. Such an equality is called a Maxwell relation. There are lots of problems in

thermodynamics which require you to pull out the right Maxwell relation at the right time. I’m going

to try to avoid asking you to guess when you should try to use them. Rather, I want you to focus on
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two main points: (1) they can always be derived from mixed partial derivatives of a thermodynamics

potential and (2) they relate two different types of experiments. It is often the case that one experiment

is easier to measure than the other. For example, (∂S/∂p)T,N requires a measurement of how entropy

grows with pressure at fixed T and N , but you may only have a way of measuring how volume

changes with temperature. In that case, the Maxwell relation saves the day.

Let’s start with dG = −SdT + V dp + µdN . The first step here is recognizing that dG =
(
dG
dT

)

N,p
dT +

(
dG
dp

)

N,T
dp+

(
dG
dN

)

T,p
dN , meaning that −S =

(
dG
dT

)

N,p
, V =

(
dG
dp

)

N,T
, and

µ =
(
dG
dN

)

T,p
. We then can make the following connection:

(
∂2G

∂p∂T

)

N

=

(

∂

∂p

(
∂G

∂T

)

p,N

)

T,N

=

(

∂

∂T

(
∂G

∂p

)

T,N

)

p,N

where we can take −S =
(
dG
dT

)

N,p
and V =

(
dG
dp

)

N,T
to say:

(

∂

∂p

(
∂G

∂T

)

p,N

)

T,N

= −

(
∂S

∂p

)

T,N

and

(

∂

∂T

(
∂G

∂p

)

T,N

)

p,N

=

(
∂V

∂T

)

p,N

Finally, we obtain the Maxwell relation:

(
∂S

∂p

)

T,N

= −

(
∂V

∂T

)

p,N

3. Ideal gas chemical potential. We began our study by discussing the response to changes in three

extensive macroscopic constraints, N,V , and E. We then swapped out two of those rigid constraints,

V and E, for conjugate variables, p and T to allow volume and energy to fluctuate. I think you

probably have a sense of how one could tune all of these five parameters: N,V,E, p and T in an

experiment. The missing link is the chemical potential µ, the intensive quantity conjugate to N . I

find it to be much more mysterious how one can make a giant bath with a tunable value of a chemical

potential. In other words, suppose you have your system and want that system to exchange particles

with a large particle reservoir with chemical potential µ. I know how to make a bath of a particular

temperature with an ice bucket or a water bath. Similarly, I know how to make a bath with a particular

pressure. In this problem, we show that you can make a bath with a particular µ out of a ideal gas

by appropriately adjusting p and T . We assume that our bath consists of a dilute vapor, for which the

ideal gas law, pV = NkBT , is a good approximation.

(i) Ideality implies that internal energy E depends only on T and N , and not on p. Show that this is

true by evaluating the derivative (∂E/∂p)T,N . Use as a starting point the fundamental relation

dE = TdS − pdV + µdN
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and differentiate with respect to p at fixed T and N to get:

(
∂E

∂p

)

T,N

= T

(
∂S

∂p

)

T,N

− p

(
∂V

∂p

)

T,N

.

From here, use your Maxwell relation from problem 2 and differentiate the ideal gas law.

As instructed, we start with

dE = TdS − pdV + µdN.

If we were to differentiate with respect to S, V , or N we’d get back the intensive quantities T ,

−p, and µ. But we can also differentiate with respect to one of these intensive quantities. The

difference is that we will now have multiple terms because V and S are not held fixed:

(
∂E

∂p

)

T,N

= T

(
∂S

∂p

)

T,N

− p

(
∂V

∂p

)

T,N

.

Inserting the Maxwell relation from problem 2, we have:

(
∂E

∂p

)

T,N

= −T

(
∂V

∂T

)

p,N

− p

(
∂V

∂p

)

T,N

.

For an ideal gas, we can compute the derivatives of V with respect to both p and T after

rearranging the ideal gas law to be V = NkBT (p
−1):

(
∂V

∂T

)

p,N

=
kBN

p
and

(
∂V

∂p

)

T,N

= −
kBNT

p2
,

which implies

(
∂E

∂p

)

T,N

= −T

(
∂V

∂T

)

p,N

− p

(
∂V

∂p

)

T,N

= −
kBNT

p
+

kBNT

p
= 0.

(ii) Argue based on your result from part (i) and the property of extensivity that the energy of an ideal

gas can be written in the form

E = Nǫ(T ).

From part (i), we know that the internal energy is only a function of T and N , but internal

energy is also an extensive function. Consequently, E cannot be an arbitrary function of N , it

must be linearly proportional to N . From this, we conclude that

E = Nǫ(T ),

where ǫ(T ) is the temperature-dependent internal energy per particle.

(iii) The entropy of an ideal gas can be divided into two parts: that associated with intramolecular

fluctuations Sintra = Ns(T ), and that associated with distributing molecules in space (i.e., center-

of-mass translation), Strans. In problem 1 of the last problem set, you calculated Strans for a dilute
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system to be

Strans = −kBV [ρ ln(ρv) − ρ],

where ρ = N/V and v is the volume of a microscopic lattice cell introduced for the purpose of

counting. Using that result, write the total entropy S = Sintra + Strans of our ideal gas as a function

of p, N , and T . (Your answer may involve the unspecified function s(T ).)

S = Ns(T )− kBV [ρ ln(ρv)− ρ]

= Ns(T )− kB
NkBT

p

[
p

kBT
ln

(
pv

kBT

)

−
p

kBT

]

= Ns(T )−NkB ln

(
pv

kBT

)

+NkB.

(iv) Combining these results, compute the Gibbs free energy, G = E − TS + pV , of an ideal gas.

Differentiate appropriately to determine the chemical potential µ(T, p).

We can now explicitly express the Gibbs free energy in terms of its natural variables T, p, and

N :

G = E − TS + pV

= Nǫ(T )− TNs(T ) +NkBT ln

(
pv

kBT

)

−NkBT +NkBT

= Nǫ(T )− TNs(T ) +NkBT ln

(
pv

kBT

)

.

Differentiating with respect to N at constant T and p gives the chemical potential

µ(T, p) =

(
∂G

∂N

)

T,p

= ǫ(T )− Ts(T ) + kBT ln

(
pv

kBT

)

.

(v) Show that µ(T, p) can be written

µ(T, p) = µ(0)(T ) + kBT ln

(
p

p0

)

,

where p0 is a reference value of pressure (e.g., 1 atm). Identify the quantity µ(0)(T ) in terms of T , v,

and p0. (Your answer may involve the unspecified functions ǫ(T ) and s(T ).) Just as the temperature

T regulated how much our system wanted to donate or extract energy from a temperature bath, the

chemical potential regulates how much the system wants to donate or extract particles from the sur-

rounding environment. We have just derived how that propensity for adding/removing particles can

be changed by tuning the temperature and pressure.
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µ(T, p) = ǫ(T )− Ts(T ) + kBT ln

(
pv

kBT

)

= ǫ(T )− Ts(T ) + kBT ln

(
p0v

kBT

)

︸ ︷︷ ︸

µ(0)(T )

+kBT ln

(
p

p0

)

.

A note about standard states:

It may seem silly that we just introduced the reference pressure p0 out of nowhere. Why

wouldn’t we just write

µ(T, p) = ǫ(T )− Ts(T ) + kBT ln

(
v

kBT

)

︸ ︷︷ ︸

µ∗(T )

+kBT ln p,

with µ∗(T ) being our proposed standard state chemical potential? The problem with writing

things this way is that I’m now computing the logarithm of a dimensionful quantity (p has

dimensions of pressure and v/kBT has dimensions of one over pressure), yet logarithms only

act on dimensionless numbers. Mathematically there’s no problem with the expression since

the two logarithm terms are going to combine together to give canceling units, but when we

split out a term to define a standard state chemical potential, we would only be able to compute

the µ(0) if it is expressed in terms of logs of dimensionless quantities.
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