Chem 444 Problem Set 4 Due: Friday, October 17

1. The Helmholtz free energy and the canonical partition function. In lecture I showed that in a
macroscopic system (N > 1), the Helmholtz free energy A can be equated with the logarithm of the
canonical partition function ):

BA(N,V,T) = —InQ(N,V,T).

This problem develops a different (friendlier?) way to show that connection between macroscopic
thermodynamics and statistical mechanics.

(i) Start with the microscopic picture. Each microstate v has energy E(v), so the canonical partition
function is

QN.VT)= > e Pl

v consistent with N,V

Show that

<81@H5Q>V,N =

(55 ) (5)
B V,N - Q\op V,N
= _i Z E(l/)e—E(u)/kBT

v consistent with N,V

== > E()P(v)

v consistent with N,V

— —(E).

(i1) Now let’s think about the thermodynamic picture. Apply the chain rule to demonstrate that

Chem 444, Fall 2025 1



<8(:5’7§A)>V,N A <%>V,N

oT 0A
=—4=F (a?)m (a—T>V,N

= —A+ B(ksT?) <g—ﬁ>
V,N

= -—A-TS
- _FE.

(iii) In the thermodynamic limit (N — oo), we replace (F) by FE, which we now take to be a
deterministic quantity. Hence in that limit, the derivative of In () with respect to [ is exactly the same
as the derivative of —5A with respect to 5. Conclude that it must be the case that in the large system
size limit — A = In @ + C, where C' is some constant that does not depend on 5. Why do you think
we suppressed the constant in lecture?

We have equated the derivatives. If we integrate both sides with respect to 8 then we get
BA=—-1lnQ+C
where C is a constant of integration. We consider the low-temperature limit of both sides

E+TS _

lim IBA = lim == BEground

T—0 T—0 kT

since limp_,g S = 0. Similarly,

limn@Q+C =—1In e PEeround +C = /BEground +C.
T—0

For the left- and right-hand sides to be equal in the low temperature limit, we must set the
integration constant C' to zero.

2. Practice with Legendre transforms and Maxwell relations. In class we discussed how the Helmholtz
free energy could be constructed as A = F — T'S to yield a “thermodynamic potential” which is a
natural function of 7', V', and N. This is to be contrasted with the first thermodynamic potential we
introduced: S, a function of F, V, and N. Notice that the transformation passing from S to A is
a lot like the transition from the microcanonical (constant F) to canonical (constant 1') ensemble, a
similarity which is very much not an accident. In that transformation from microcanonical to canon-
ical we were motivated to study an open system which had a fluctuating energy since energy was
exchanged with a very large bath. Suppose we have a system which, through interactions with the
outside environment, has a fluctuating energy and a fluctuating volume.

(i) Show that the Gibbs free energy, G = E — T'S + pV/, is a thermodynamic potential which is
naturally a function of 7', p, and N by writing out an expression for dG in terms of dT', dp, and dN.
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Recall from lecture that dE = T'dS + udN — pdV . Substituting this in for dF in the following
equation, observe that
dG =dE —d(TS) 4+ d(pV) =TdS — pdV + pdN — TdS — SdT + pdV + Vdp
= —SdT + Vdp + pdN

gives a differential in terms of d7T', dp and dV, so G is a natural function of 7', p, and N.

. J

(i1) You have no doubt come across the Gibbs free energy in a chemistry class when discussing whether
or not a chemical reaction would occur spontaneously. Why did you focus on the Gibbs free energy
and not the Helmholtz free energy?

Free energies help us predict what will occur spontaneously. Namely, systems tend to evolve
in a manner that minimizes the free energy. The applicable free energy, however, depends
on the macroscopic constraints that we impose (the choice of ensemble). For example, when
we have fixed N, V, and E, we saw that the expected behavior was that which increased en-
tropy S (entropy maximization could equivalently be thought of as minimizing —S). That
simple principle of entropy maximation lets us predict the most likely macrostates if our sys-
tem is truly unable to exchange particles, energy, or volume with an outside environment, but
if the system can interact with an outside environment we must also weigh the impact on the
environment’s entropy. That’s what we did when we studied the canonical ensemble and con-
structed the associated Helmholtz free energy. We saw that the system didn’t want to merely
minimize —S, it now wanted to minimize the function £ — T'S. The first term came from
the bath penalizing situations when the system had high entropy. The second term was like
the original microcanonical minimization of —S (7 is a fixed constant in the microcanonical
ensemble). If, however, the system can also exchange volume with the environment, then we
should work in an ensemble that holds N, T, and p fixed. In that case the free energy whose
minimization predicts the equilibrated behavior is the one which is a natural function of IV,
T, and p: the Gibbs free energy. In chemistry, lots of experiments happen in a vessel that is
not enclosed, so the volume of the solution can swell or contract. These constant-pressure,
constant-temperature, fixed particle concentration experiments are therefore described by the
Gibbs, not the Helmholtz, free energy.

\

(iii) From multivariable calculus you should have seen that the “mixed partial derivatives” of a multi-
variable function are equal. For example, let f(z,y) be a function of x and y such that

_(of of
df = <%>ydx + <a—y>xdy.

The order of differentiation with respect to both = and y does not matter:

@ (5),) -G (3)),

oy c%cyx Oz Z?yxy 0xdy
Use this fact and your expression for dG in (i) to relate (0S/0p)  to a partial derivative involving
volume and temperature. Such an equality is called a Maxwell relation. There are lots of problems in

thermodynamics which require you to pull out the right Maxwell relation at the right time. I'm going
to try to avoid asking you to guess when you should try to use them. Rather, I want you to focus on

Chem 444, Fall 2025 3



two main points: (1) they can always be derived from mixed partial derivatives of a thermodynamics
potential and (2) they relate two different types of experiments. It is often the case that one experiment
is easier to measure than the other. For example, (0.5/0dp) y requires a measurement of how entropy
grows with pressure at fixed 7" and N, but you may 0nl7y have a way of measuring how volume
changes with temperature. In that case, the Maxwell relation saves the day.

7

Let’s start with dG = —SdT" + Vdp + udN. The first step here is recognizing that dG =

ple] dG dG . da dG
(W)N,p dT + (d—p>Npo+ (W)T,p dN, meaning that —S = (W)Mp’ V= <%)NT, and

U= (%)TW' We then can make the following connection:

()= (35 (57, = o ()
opdT ) op \ oT pN) N oT \ dp TN) , v

S = (4 — (4G .
where we can take —S ( dT) Nop and V < dp )N,T to say:

35 (7))~ (o)
AN VY 9 )rn
37 (3 ).~ (5T)
0T\ 1) .~ \OT ),

Finally, we obtain the Maxwell relation:
(5 )=~ ()
dp TN oT N

3. Ideal gas chemical potential. We began our study by discussing the response to changes in three
extensive macroscopic constraints, N, V', and E. We then swapped out two of those rigid constraints,
V and E, for conjugate variables, p and T to allow volume and energy to fluctuate. I think you
probably have a sense of how one could tune all of these five parameters: N,V, E,p and T in an
experiment. The missing link is the chemical potential p, the intensive quantity conjugate to N. I
find it to be much more mysterious how one can make a giant bath with a tunable value of a chemical
potential. In other words, suppose you have your system and want that system to exchange particles
with a large particle reservoir with chemical potential p. I know how to make a bath of a particular
temperature with an ice bucket or a water bath. Similarly, I know how to make a bath with a particular
pressure. In this problem, we show that you can make a bath with a particular p out of a ideal gas
by appropriately adjusting p and 7. We assume that our bath consists of a dilute vapor, for which the
ideal gas law, pV = NkgT, is a good approximation.

and

(i) Ideality implies that internal energy E depends only on 7" and N, and not on p. Show that this is
true by evaluating the derivative (OE/Op)r n. Use as a starting point the fundamental relation

dE = TdS — pdV + udN
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and differentiate with respect to p at fixed 7" and N to get:

(& )= (5)a 7 (&)
dp TN op TN op T,N.

From here, use your Maxwell relation from problem 2 and differentiate the ideal gas law.

a ~

As instructed, we start with

dE =TdS — pdV + udN.

If we were to differentiate with respect to S, V, or N we’d get back the intensive quantities 7',
—p, and p. But we can also differentiate with respect to one of these intensive quantities. The
difference is that we will now have multiple terms because V' and S are not held fixed:

()T (5 )7 (&)
op TN op TN op T,N.

Inserting the Maxwell relation from problem 2, we have:

(& )= (57),, 7 (%)
dp TN or p,N dp T,N.

For an ideal gas, we can compute the derivatives of V' with respect to both p and T' after
rearranging the ideal gas law to be V. = NkgT(p~!):

<a_v> kN <a_v> _ ksNT
T ), n P )N p?

which implies

<3E> <8V> <8V> kgNT  kpNT
5 =-T{55] —rl5 = - + = 0.
Ip T,N or N Ip T.N p p

(ii) Argue based on your result from part (i) and the property of extensivity that the energy of an ideal
gas can be written in the form

\

E = Ne¢(T).

From part (i), we know that the internal energy is only a function of 7" and N, but internal
energy is also an extensive function. Consequently, £ cannot be an arbitrary function of IV, it
must be linearly proportional to N. From this, we conclude that

E = Ne(T),

where ¢(7T') is the temperature-dependent internal energy per particle.

. J

(iii) The entropy of an ideal gas can be divided into two parts: that associated with intramolecular
fluctuations Sintra = Ns(T), and that associated with distributing molecules in space (i.e., center-
of-mass translation), Siyans. In problem 1 of the last problem set, you calculated Styans for a dilute
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system to be

Strans = —kBV[P IH(PU) - p]a

where p = N/V and v is the volume of a microscopic lattice cell introduced for the purpose of
counting. Using that result, write the total entropy S = Sintra + Strans Of our ideal gas as a function
of p, N, and T'. (Your answer may involve the unspecified function s(7").)

r

S = Ns(T) - ksV[pln(pv) — p|
:Ns(T)—kBNkBT[ P ln< p” ) D ]

p  |kgT  \kgT ) kpT
pv
= Ns(T) — Nkgln | — ) + Nkg.
8( ) Bn(kBT>+ B

. J

(iv) Combining these results, compute the Gibbs free energy, G = E — T'S 4 pV/, of an ideal gas.
Differentiate appropriately to determine the chemical potential (7', p).

We can now explicitly express the Gibbs free energy in terms of its natural variables 7', p, and
N:

G=FE-TS+pV

— Ne(T) — TNs(T) + NkgT'ln (%) — NkgT + NkgT
B

= Ne(T) — TNs(T) + NkgTln | 2% ).
kpT

Differentiating with respect to NV at constant 7" and p gives the chemical potential

) = (S—f,)T = 1) = To(1) + i (22

(v) Show that x(T', p) can be written

w(T,p) = pO(T) + kpT'In (pﬁ) ,
0

where py is a reference value of pressure (e.g., 1 atm). Identify the quantity (%) (T") in terms of T', v,
and po. (Your answer may involve the unspecified functions €(7") and s(7).) Just as the temperature
T regulated how much our system wanted to donate or extract energy from a temperature bath, the
chemical potential regulates how much the system wants to donate or extract particles from the sur-
rounding environment. We have just derived how that propensity for adding/removing particles can
be changed by tuning the temperature and pressure.

Chem 444, Fall 2025 6



W(T,p) = (T) — Ts(T) + kpTn (é—T)

= ¢(T) — Ts(T) + kT ln (%) +kpT In <£> .

B Pbo

§O(T)

A note about standard states:
It may seem silly that we just introduced the reference pressure pg out of nowhere. Why
wouldn’t we just write

u(T,p) = e(T) — Ts(T) + kpT'In (%) kT Inp,
B

w*(T)

with p*(T") being our proposed standard state chemical potential? The problem with writing
things this way is that I'm now computing the logarithm of a dimensionful quantity (p has
dimensions of pressure and v/kpT has dimensions of one over pressure), yet logarithms only
act on dimensionless numbers. Mathematically there’s no problem with the expression since
the two logarithm terms are going to combine together to give canceling units, but when we
split out a term to define a standard state chemical potential, we would only be able to compute
the ,u(o) if it is expressed in terms of logs of dimensionless quantities.
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