
Chem 444 Problem Set 3 Due: Friday, October 10

1. An ideal gas on a lattice. In class we introduced a microscopic definition of entropy due to Boltz-

mann:

SB = kB ln Ω.

A more general expression for entropy due to Gibbs is:

SG = −kB
∑

ν

P (ν) lnP (ν),

where ν is a microstate.

(i) For an isolated system (with fixed energy E, number of molecules N , and volume V ) show that

SB and SG are identical. Recall that in such a system, all allowed microstates are equally likely.

(ii) For the remaining parts of this problem, consider a collection of N indistinguishable particles

arranged on a lattice of M cells. Each cell can be occupied by at most one particle, and particles in

different cells do not interact. Calculate the total number Ω(M,N) of possible configurations for this

system.

(iii) Assuming M,N , and M −N are all very large, use Stirling’s approximation to write the Boltz-

mann entropy per cell, SB/M , as a function of f ≡ N/M alone.

(iv) The occupation state of one cell in this lattice system is not affected by that of any other cell. As

a result, the total entropy can be written as S = Mscell, where scell is the entropy of a single cell.

Using Gibbs’ definition of entropy, calculate scell in terms of p1 and p0, the probabilities of finding a

particular cell occupied or unoccupied, respectively.

(v) By expressing p0 and p1 in terms of f , the fraction of occupied cells, demonstrate that the Boltz-

mann and Gibbs lattice gas entropies are the same.

(vi) Show that for the low density lattice gas (f ≪ 1),

S ≈ −kBV [ρ ln(ρv) − ρ],

where v is the volume of a single lattice cell, and ρ = N/V = N/(Mv) is the density.

(vii) From macroscopic thermodynamics we saw that

dS =
1

T
dE +

p

T
dV − µ

T
dN,

so

p

T
=

(

∂S

∂V

)

E,N

.

Use the expression you just obtained for the entropy of a low density lattice gas to explicitly compute

the partial derivative. Express your result as the familiar ideal gas law: pV = NkBT . (You may be

more familiar with pV = nRT . Make sure you think through the distinction between the two forms

if it’s not immediately obvious to you.)

(viii) An ideal gas is one with particles which do not interact. Is the lattice gas model whose entropy

you found in parts (iii) through (v) an ideal gas? In other words, are there any interactions between

the particles? Explain how your answer does or does not agree with your derivation of an ideal gas

law in (vii).
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2. A polymer off a lattice. There are many ways in which you might argue that the polymer model from

last week’s problem set is lacking. For one thing, you might complain that real polymers don’t live on

a grid; we should have let each step move in a random direction, not just along a Cartesian axis. You

might also complain that polymers can stretch. Perhaps we should have allowed the size of each link

between monomers to vary. In this problem we will explore a model of a Gaussian polymer (in three

dimensions) which addresses both of these complaints. It’s a model we’ll refer back to in lectures as

we discuss heat, work, and free energy.

We denote the position of the n + 1 monomers (still n segments as in last week’s lattice polymer)

by R0,R1, . . .Rn and define our coordinate system by putting the origin at the location of the ini-

tial monomer, so R0 = 0. The next monomer’s position is randomly selected from the Gaussian

distribution

P (R1) =

(

3

2πℓ2

)
3
2

exp

(

−3 (R1)
2

2ℓ2

)

. (1)

Observe that the bond between monomers 0 and 1 can be of variable length and can point in any

direction in three-dimensional space, in contrast to Problem 1. Monomer 2’s position is similarly

selected from a Gaussian, but now a Gaussian centered at the location of the second monomer:

P (R2|R1) =

(

3

2πℓ2

)
3
2

exp

(

−3 (R2 −R1)
2

2ℓ2

)

.

The left-hand-side is read as “the probability of monomer 2 position R2 given that monomer 1 is at

R1.” The pattern continues, so the position of monomer i+ 1 is randomly selected from

P (Ri+1|Ri) =

(

3

2πℓ2

)
3
2

exp

(

−3 (Ri+1 −Ri)
2

2ℓ2

)

.

The goal of this problem is to see that this model has the exact same root mean squared end-to-end

distance as the simpler polymer in Problem 1. (The secondary goal is to become familiar with this

model since it will come up in lecture.)

(i) First, let’s see the result by sampling polymers with a computer. Adapt your polymer sampling

code from last week to generate random Gaussian polymers with n segments. If you’re using Python,

you’ll probably find the function np.random.normal to be useful. By generating a collection of many

random polymers with the same length, plot for yourself a histogram for the x-component of Rn.

What is the mean of this histogram? In terms of l, what is the variance? Repeat these calculations

for various n from 1 to 100 and plot the variance of the x-component of Rn as a function of n.

As in experimental plots, it is best to include error bars. Your error bars should indicate how much

uncertainty there is due to the fact that you only sampled some of the possible polymer configurations.

It is a little more painful to include error bars. The simplest way to get error bars is to do N inde-

pendent experiments, compute the quantity of interest from each experiment, then find the standard

deviation of the values from those N experiments. If the experiments truly are independent of each

other, then the standard deviation will drop like 1/
√
N . Here, I generate 10,000 polymer samples

then split those into 10 independent subsamples (independent experiments). The standard deviation I

would expect from 10,000 samples is 1/
√
10 times as much as the standard deviation I would expect

from 1,000 samples. I am able to estimate this 1,000 sample standard deviation from my 10 subsam-

ples, then rescale it to plot 10,000 sample error bars. Yes, it’s tedious to do this. Yes, the error bars

are very small in this case. But this type of manipulation will probably be something you’ll want to

use throughout graduate school when responsibly analyzing data.
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1 ErrorBar_List = np.zeros(len(Num_Steps_List));

2

3 Num_Subsamples = 10;

4

5 for k in range(len(Num_Steps_List)):

6 subsamples = np.split(np.transpose(x_distances)[k], Num_Subsamples);

7 Subsample_Variances = np.zeros(Num_Subsamples)

8 for m in range(Num_Subsamples):

9 Subsample_Variances[m] = np.var(subsamples[m])

10 ErrorBar_List[k] = np.sqrt(np.var(Subsample_Variances) \

11 / float(Num_Subsamples))

12

13 plt.errorbar(Num_Steps_List, Variance_List,yerr=ErrorBar_List);

14 plt.xlabel(r’$n$’, fontsize=18);

15 plt.ylabel(r’$\mathrm{Variance: \ }\langle R_{n,x} ˆ2 \rangle$’, fontsize=18);

16 plt.tight_layout()

17 plt.savefig(’PS3P2p1MSDErrorBars.eps’,format=’eps’,transparent=True);

18 from google.colab import files

19 files.download(’PS3P2p1MSDErrorBars.eps’)
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(ii) In the last problem set, you found that 〈R2
n〉 = nl2. Compare this to your result from (i). Explain

any notable similarities and differences between the two results.

(iii) To estimate an average value, we have used the average of a set of sampled polymers, but the

true average involves an integration over all possible polymers. Typically such an integral cannot be

performed analytically, but in the special case of Gaussian distributions, the integrals are solvable (as

you explored on the previous problem set). Using those Gaussian integrals (you don’t need to rederive

these!), compute the root mean squared distance of the connection between monomer 0 and 1 (it will

be the same between any monomers i and i+1). You will probably want to write integrals in Cartesian

coordinates, i.e.,

〈R2
1〉 =

(

3

2πℓ2

)
3
2
∫

dR1 (R1)
2 e−

3(R1)
2

2ℓ2

=

(

3

2πℓ2

)
3
2
∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫

∞

−∞

dz1 (x
2
1 + y21 + z21) exp

(

−3(x21 + y21 + z21)

2ℓ2

)

,
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with R1 = (x1, y1, z1). If you want, you can do integrals like this in Mathematica as well.

(iv) We now consider n = 2. Again, the first monomer is set to be at the origin, the second monomer is

at R1 and the final monomer is at R2. In terms of R1, R2, and l, what is the (normalized) probability

distribution for a microstate of the polymer P (R1,R2)? We said all microstates are equally likely,

but you probably found that these are not. Why not?

(v) Suppose you only intend to measure the location of R0 (the origin) and R2 but will never explicitly

observe R1. Consequently, you would like to know the marginalized distribution that averages over

the possible values of R1:

P (R2) =

∫

dR1 P (R1,R2).

Perform that integration (Mathematica or citing last week’s results are fine) to determine the marginal

distribution P (R2). Compare this distribution to the distribution in Eq. (1). What is different? What

is the same?

(vi) A similar strategy could work for larger n. You could write down a Gaussian distribution for

P (R1,R2, . . .Rn), the probability of the microstate then get the marginal distribution for the final

monomer position as:

P (Rn) =

∫

dR1

∫

dR2 . . .

∫

dRn−1P (R1,R2, . . .Rn).

Doing so many Gaussian integrals could get painful, but the result must still be a Gaussian. Based on

what you learned in part (i) and (ii) about the mean and variance of Rn, determine this (normalized)

Gaussian distribution P (Rn).

(vii) [Optional] Prove your answer to (vi) without asserting a priori that the distribution will be Gaus-

sian.
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