
Chem 444 - Elementary Statistical Mechanics! Midterm Exam

Date: Thursday, November 9

Instructions: You may utilize notes and problem set solutions (both your solutions and the posted solutions).
You may not, however, discuss the problems with others.

Problem 1: / 12
Problem 2: / 15
Problem 3: / 16
Problem 4: / 30
Problem 5: / 27

Total: / 100

Equations you may find useful:
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1. System size scaling. [12 pts.]

2. Protein-ligand binding. [15 pts.] The pharmaceutical industry routinely wrestles with the challenge
of identifying small molecules which can act as drugs by binding to disease-related proteins. For
decades they have used computers to help screen through candidates of potential drugs. A common
approach to such screens, known as docking, is summarized in the following picture:

Briefly, the idea is to take the structure of a frozen protein from a crystal, understand the shape
and charge distribution around some binding pocket (cavity), then computationally try to fit different
ligands into that pocket. The picture refers to that last step as “shape/electrostatics comparison”.

You can perhaps imagine that powerful quantum chemistry techniques like density functional theory
could be used to compute the energy for the protein configuration in the presence of the ligand, and
you could seek ligands which minimize that energy. That approach makes me a little uncomfortable
because it has “integrated out” all of the solvent degrees of freedom. My stat mech upbringing makes
me worried that ignoring the solvent could cause problems.

3. Fluctuating energy and particles. [16 pts., 2 pt. each]

4. Heat capacity. [32 pts.] The heat capacity per mole of a diatomic gas, HD, is plotted below in terms
of the gas constant R = NAkB, with NA being Avogadro’s number.
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Based on the labels and your chemical intuition, you see that as you move to higher temperatures
you “unlock” higher energy states. At low temperatures the molecules have translational motion but
are stuck in the ground rotational and vibrational states. At a high enough energy, the rotational
excitations start to become relevant, and at a still higher temperature the vibrations also influence the
heat capacity.

Todd tries to claim that the HD heat capacity should be simple to understand—the heat capacity should
go up the more microstates you unlock. You point out to him that the behavior around T = θrot seems
to contradict his simplistic explanation.

5. Hard Spheres. [27 pts.] This year’s Nobel Prize in Chemistry was awarded for quantum size effects,
including in colloidal nanoparticles. While much of the interest in those colloidal nanoparticles has
focused on their optical properties, it is also been interesting to consider how multiple colloids interact
with each other. As roughly spherical crystals, you might reasonably approximate a nanoparticle as if
it is just a “hard sphere”. Like billiard balls, such a model would express (a) that is is impossible for
two nanoparticles to overlap each other and (b) that two nanoparticles separated by a gap do not exert
forces on each other. Mathematically, one would express these facts with the pair potential:

V (r) =

{
∞, r < σ

0, r > σ,

where r is the distance separating the center of the two spheres and σ is the diameter of the spheres.
Models of hard spheres are most natural in two dimensions (hard disks) or three dimensions (hard
spheres), though sometimes they’re even considered in higher dimensions. In this problem, we will
discuss an important statistical mechanical consideration for how two nanoparticles can interact in
two-dimensional space.
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