
Chem 444 Problem Set 2 Due: Friday, October 6

1. The climb up.

“[The Boltzmann distribution] is the summit of statistical mechanics, and the entire subject is either

the slide-down from this summit, as the principle is applied to various cases, or the climb-up to where

the fundamental law is derived.” —Richard Feynman

In class we presented a reasonable but less than rigorous derivation of the Boltzmann distribution,

P (ν) ∝ e−βE(ν),

for microstates ν of a system that can exchange energy with a very large bath. This result was obtained

from the fundamental relationship

P (ν) ∝ ΩB(ET − E(ν))

through a Taylor expansion of ln ΩB, where ET denotes the total energy shared by system and bath,

and ΩB(EB) is the number of bath microstates with energy EB. Here you will develop this argument

a little more carefully (and perhaps a little more convincingly—you may have wondered, for example,

why we were Taylor expanding ln ΩB and not ΩB).

We will assume that ΩB has a large deviation form,

ΩB = [ωB(ǫB)]
NB ,

where NB is the number of molecules in the bath, ǫB ≡ EB/NB is the corresponding energy per

molecule, and ωB(ǫB) is a smooth function that does not depend on the size of the bath. As in lecture

the dependence of ΩB on EB will be used to define a property β of the bath:

β ≡
(

∂ ln ΩB

∂EB

)

NB,VB

(i) Show that β is insensitive to the extent of the bath. In particular, relate β to ωB and derivatives of

ωB with respect to ǫB. Explain why this relationship indicates independence of the bath’s size. (As we

will see in future lectures, this β is an inverse temperature, so it should be pleasing β doesn’t depend

on bath size. When I say to put a test tube in a 25◦ C water bath, I shouldn’t have to specify if the bath

is 1 liter or 2 liters in volume. Assuming the volume of the bath is very big compared to the system, I

should be able to specify β alone.)

β =

(

∂ ln ΩB

∂EB

)

NB,VB

= NB
∂

∂EB
lnωB(ǫB) =

NB

ωB

∂ωB

∂ǫB

∂ǫB
∂EB

=
1

ωB

∂ωB

∂ǫB

Notice that all factors of NB have canceled. Since ωB is a smooth function that does not

depend on the size of the bath, it cannot depend on NB. Increasing the system size thus yields

the exact same value of β.

(ii) Show that
(

∂ΩB

∂EB

)

NB,VB

= βΩB
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(

∂ΩB

∂EB

)

NB,VB

=

(

∂eNB lnωB(ǫB)

∂EB

)

NB,VB

= eNB lnωB(ǫB)
∂ lnωB(ǫB)

∂ǫB

∂ǫB
∂EB

NB = βΩB.

(iii) Show that
(

∂2ΩB

∂E2
B

)

NB,VB

= β2ΩB + c.

Identify the quantity c and explain why it can be neglected in the limit NB → ∞.

(

∂2ΩB

∂E2
B

)

NB,VB

=
∂

∂EB

(

∂ΩB

∂EB

)

NB,VB

=

(

∂(βΩB)

∂EB

)

NB,VB

= β

(

∂ΩB

∂EB

)

NB,VB

+ΩB

(

∂β

∂EB

)

NB,VB

= β2ΩB + c,

where

c = ΩB

(

∂2 ln ΩB

∂E2
B

)

NB,VB

= ΩB

(

∂β

∂EB

)

NB,VB

= ΩB
∂β

∂ǫB

∂ǫB
∂EB

=
ΩB

NB

∂β

∂ǫB
.

Because neither β nor ǫB depend on the system size NB, the derivative on the right hand side

also does not depend on NB. The ratio of c/(β2ΩB) decays as 1/NB, and hence c can be

neglected in the NB → ∞ limit.

(iv) Calculate
(

∂nΩB

∂En
B

)

NB,VB

for arbitrary (integer) n. Do not include any terms that are negligible in the limit NB → ∞.

You can continue using the chain rule as in (iii) and observe that all terms involving a derivative

of β with respect to EB will have contributions which are negligible in the NB → ∞ limit.

That leaves only

lim
NB→∞

(

∂nΩB

∂En
B

)

NB,VB

= βnΩB.

(v) Consider the Taylor expansion

ΩB(ET − E) = ΩB(ET)− E

(

∂ΩB

∂EB

)

NB,VB

+
1

2
E2

(

∂2ΩB

∂E2
B

)

NB,VB

+ . . .

=

∞
∑

n=0

1

n!
(−E)n

(

∂nΩB

∂En
B

)

NB,VB

,

where all partial derivatives are implicitly evaluated at E = 0.
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Combining your results together with this expansion, show that the relationship

ΩB(ET − E(ν)) ∝ e−βE(ν)

is exact in the limit NB → ∞ of an infinitely large bath.

ΩB(ET − E) =
∞
∑

n=0

1

n!
(−E)n

(

∂nΩB

∂En
B

)

NB,VB

=

∞
∑

n=0

1

n!
(−βE)nΩB(ET)

= ΩB(ET)e
−βE

2. A simple model of a polymer.

You’re no doubt aware that the shape a protein folds up into is influenced by energetic interactions

between amino acids. You may not have given as much thought to the influence of entropy on a

protein’s shape. To focus on that concept, we consider the simplest model for conformational fluctua-

tions of a long chain molecule, formed from n polymer segments connected end to end. Each segment

i = 1, 2, . . . , n (perhaps comprising many chemical units) has a fixed length ℓ and an orientation b̂i
that is parallel to one of d Cartesian axes (x̂, ŷ, or ẑ in 3 dimensions). In other words, the molecular

configuration traces a random walk on a d-dimensional cubic lattice:

Imagine that the orientations of different segments are statistically independent, and that there is no

preferred orientation, 〈b̂i〉 = 0 and 〈b̂i · b̂j〉 = δij , where δij = 1 if i = j and vanishes otherwise.

(i) Show that the number of microstates of such an ideal chain molecule has the form Ω = an.

Determine the parameter a as a function of dimensionality d. (Assume that every chain starts at the

origin.)

The molecule consists of n bonds, each of which can be selected from 2d options. Hence the

total number of possible polymers is Ω = (2d)n. The entropy (excluding any translational

entropy from the location of the first monomer that I’m fixing at the origin) is therefore S =
kB ln Ω = kBn ln 2d.
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(ii) What is the expected value of R, that is to say what is 〈R〉, where R = ℓ
∑n

i=1 b̂i is the end-to-end

vector?

By symmetry, 〈R〉 = 0. Every step is as likely to go left as to go right, up as to go down, etc.

(iii) The squared length of the end-to-end vector is R2 = R · R. Calculate the mean squared end-

to-end distance of the chain molecule,
〈

R2
〉

. Your result should indicate that the typical distance

between ends of the molecule grows with chain length as
√

〈R2〉 ∝ nν . Identify the exponent ν.

How does your result depend on the dimensionality d?

Notice that R = ℓ
∑n

i=1 b̂i, so

〈R ·R〉 = ℓ2〈
n
∑

i=1

n
∑

j=1

b̂i · b̂j〉

= ℓ2
n
∑

i=1



〈b̂i · b̂i〉+
∑

j 6=i

〈b̂i · b̂j〉





= ℓ2
n
∑

i=1

〈b̂i · b̂i〉

= ℓ2
n
∑

i=1

1

= ℓ2n.

Thus,
√

〈R2〉 = ℓn1/2. Remarkably the answer does not depend on the dimensionality d!

(iv) For a (three-dimensional) polymer in “good” solvent, experiments yield ν ≈ 3/5. (A “good”

solvent is one that prevents the molecule from collapsing onto itself, i.e., effective interactions among

different segments are repulsive.) Compare this measured value with the one you calculated, and

comment on the discrepancy.

The three-dimensional polymer in good solvent is slightly more spread out than what we got

from our model. The difference seems to be that our polymer can pass back over itself. If,

for example, we changed the rules so the polymer could not overlap itself (as the good solvent

apparently does), then we should anticipate less backtracking and more spread.

3. Exploring the lattice polymer with a computer

One way to get more insight into the previous problem is to sample realizations of the polymer using

a computer. To illustrate the idea, let’s temporarily think about last week’s coin flip problem. With 3
coin flips, one can enumerate (that is list out) all of the possible sequences of coin flips: HHH, HHT,

HTH, THH, HTT, THT, TTH, TTT. You could even write a computer program to systematically

generate the possibilities, but for N coin flips there will be 2N possibilities. As N gets bigger and

bigger, it becomes less and less reasonable to use a computer to generate all of the possibilities.

Rather, it is commonly useful to generate representative samples from the probability distribution.

You might, for example, use a computer to randomly flip 100 coins in a row then use that particular
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100-flip sequence as a good guess for what you would expect. Since all of the coin flip microstates

are equally likely, it is kind of crazy to think that any one of your randomly generated sequences is

actually a good guide for what to expect. Nevertheless, you could collect several different 100-flip

sequences and take that collection of samples as a good reflection of the distribution of possibilities.

In particular, you could approximate the distribution for a macrostate, like the total number of times

you got heads, by constructing a histogram that counts up how many times your samples returned 0

heads, 1 head, 2 heads, etc.

For the polymer problem, we generate representative samples of these polymers by randomly picking

a direction in which to extend the polymer during each step, with all of the directions on the grid being

equally probable. Online, you will find a link to some code that generates such random polymers in

both two- and three-dimensional space.

(i) Using the provided code (or by writing your own), generate some samples of the random lattice

polymer in both two and three dimensions with n = 1000. Is it more common to see the polymer with

bunched up regions that appear as though it is partially “folded” or more likely to see the polymer

completely spread out as if it is “unfolded”? Notice that there is nothing like a Coulomb attraction

pulling any of the monomers closer together. What you are seeing is entirely entropic (due to counting

the number of possibilities).

The sample has some sections that look bunched up and “folded”. For the polymer to really be

fully spread out requires most of the steps to continue in the same direction, but it’s far more

likely that steps will double back on themselves. This doubling back just occurs because there

are more possibilities to do so, not because there is something like an electrostatic attraction

pulling the polymer into a folded state.

(ii) Generate 100 different n = 1000 3d polymers. How many of the 100 samples have the polymer

start and stop at the origin? Does this observation contradict your response to 2(ii)?

I think it will be exceedingly unlikely to see the polymer start and stop at the origin. It is true

that of all the end-to-end vectors, 0 is the most likely, and it’s also true that the average end-

to-end vector is 0, but the average end-to-end distance is not zero. The difference is that when

averaging the end-to-end separation, a value of −5 cancels with a value of 5 since symmetry

tells us each are equally likely. However, both such polymers have an end-to-end distance of

5. It turns out that it is far more likely to find a nonzero end-to-end distance than it is to find 0.

(iii) Given your response to part (ii), suggest a reason that the root mean squared end-to-end distance
√

〈

R2
〉

would be a better measure of the size of the polymer than the average displacement vector

〈R〉.

The root mean squared end-to-end distance circumvents the cancellations described in part v.

It gives a typical breadth of the distribution, even when the distribution of displacements is

centered at zero.

(iv) Using sufficiently many samples of the n = 1000 polymer in three dimensions, plot a histogram

to approximate the probability distribution for R2. Does your histogram agree with your answer to

2(iii)? Discuss.
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The following python code can generate the histogram:

1 import matplotlib as mpl

2 import matplotlib.pyplot as plt

3 import numpy as np

4 plt.style.use(’default’)

5

6 # Each step can be either right, left, up, or down

7 StepChoices3D = np.array([[0, 1, 0], [0, -1, 0], [1, 0, 0], [-1, 0, 0],

8 [0, 0, 1], [0, 0, -1]])

9

10 # Generate a vector of Num_Steps random numbers,

11 # each drawn uniformly between 0 and 1

12 Num_Steps = 1000

13

14 Num_Samples = 10000

15 R2values = np.zeros(Num_Samples)

16

17 for s in range(Num_Samples):

18 # generate the random numbers for polymer number s

19 RandomNumbers = np.random.random(Num_Steps)

20

21 # Initialize the 3d polymer at the origin

22 polymer3D = np.zeros([Num_Steps + 1, 3])

23

24 # Compute the position of the monomers from RandomNumbers

25 for i in range(Num_Steps):

26 polymer3D[i+1] = polymer3D[i] + \

27 StepChoices3D[int(np.floor(RandomNumbers[i]*6))]

28

29 # Record the distance between endpoints of the polymer

30 R2values[s] = np.sum((polymer3D[Num_Steps] - polymer3D[0])**2)

31

32 plt.hist(R2values,100,density=True);

33 plt.xlabel(r’$Rˆ2$’, fontsize=18);

34 plt.ylabel(r’$P(Rˆ2)$’, fontsize=18);

35 plt.title(r’$n = $’+str(Num_Steps)+’ steps, ’+

36 str(Num_Samples)+’ samples’, fontsize=20);

37 plt.text(np.max(R2values)*0.7, 0.0006, r’$\langle Rˆ2 \rangle =’ +

38 str(np.mean(R2values))+’$’);

39 plt.tight_layout()

40 plt.savefig(’r2dist.eps’,format=’eps’,transparent=True);
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⟨R2⟩ = 1004.7824

n= 1000⟨steps⟩⟨10000⟨samples

Notice that the average is (to within sampling error) equal to Nl2 = 1000, which is what we

expect.

4. Fun with Gaussians. On the last problem we had several occasions to confront the Gaussian distri-

bution,

ρ(x) =
1√
2πσ2

exp

(

−(x− µ)2

2σ2

)

.

Some students expressed that it would be useful to build a little more familiarity with the distribution.

Consider these exercises to be either a crash course or a refresher. I do not consider it important that

you “discover” the standard tricks for computing the integrals, but I do think you should be aware of

them. Please talk to me or to other students if you’re having trouble figuring out how to proceed!

(i) Normalization: Show that
∫

dx ρ(x) = 1. [Standard trick: Convert to a two-dimensional integral

over a joint distribution of identical, independent Gaussians for the x and y coordinates. Convert to

polar coordinates, taking care to include the appropriate Jacobian factor.]

Consider the distribution

P (x, y) =

[

1√
2πσ2

exp

(

−(x− µ)2

2σ2

)][

1√
2πσ2

exp

(

−(y − µ)2

2σ2

)]

=
1

2πσ2
exp

(

−(x− µ)2 + (y − µ)2

2σ2

)

.

Let z = (x, y) be the vector of x and y coordinates and µ = (µ, µ). We now show that

P (z) =
1

2πσ2
exp

(

−(z − µ)2

2σ2

)
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is a normalized distribution. We change variables, setting u = z − µ, with dz = du, so

∫

dz P (z) =

∫

du
1

2πσ2
exp

(

− u2

2σ2

)

=

∫ ∞

0
dr r

∫ 2π

0
dθ

1

2πσ2
exp

(

− r2

2σ2

)

, switching to polar coordinates

=
1

σ2

∫ ∞

0
dr r exp

(

− r2

2σ2

)

=
1

σ2

∫ ∞

0
σ2dv exp(−v), where v = r2/2σ2

= − exp(−v)|∞0
= 1.

It remains to show that P (z) being normalized implies that P (x) is also normalized. Since x
and y are independent random variables, P (z) = P (x, y) = P (x)P (y). Integration yields

1 =

∫

dz P (z)

=

(∫ ∞

−∞

dx P (x)

)(∫ ∞

−∞

dy P (y)

)

=

(∫ ∞

−∞

dx P (x)

)2

,

which does the trick.

(ii) Mean: Show that 〈x〉 =
∫∞

−∞
dx xP (x) = µ. [Standard trick: Substitute u = x − µ and notice

that an integral cancels by symmetry.]

〈x〉 =
∫ ∞

−∞

dx
x√
2πσ2

exp

(

−(x− µ)2

2σ2

)

=

∫ ∞

−∞

du
u+ µ√
2πσ2

exp

(

− u2

2σ2

)

, where u = x− µ

= µ+

∫ ∞

−∞

du
u√
2πσ2

exp

(

− u2

2σ2

)

= µ.

The final integral cancels by symmetry.

(iii) Variance: Show that
〈

(δx)2
〉

=
∫∞

−∞
dx (x − µ)2P (x) = σ2. [Standard trick: From (i) and

symmetry find the integral of e−αx2

from 0 to ∞. Differentiate with respect to α.]
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Notice that

∫ ∞

0
dx e−αx2

=
1

2

√

π

α
,

using (i) and symmetry. Now we differentiate both sides of the equality with respect to α.

∫ ∞

0
dx x2e−αx2

= − ∂

∂α

(

1

2

√

π

α

)

=
1

4

√

π

α3
.

The integral from 0 to ∞ gives the same result as the integral from −∞ to 0, so we have

√

α

π

∫ ∞

−∞

dx x2e−αx2

=
1

2α
.

Substituting in 2σ2 = 1/α gives

1√
2πσ2

∫ ∞

−∞

dx x2e−αx2

= σ2.

The final step is to confirm that a shift u = x− µ does not change the value of the integral.
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