
Chem 444 Problem Set 1 Due: Friday, September 29

Overview: The goal of this first problem set is to see how a single macrostate can become exceedingly prob-

able even when all the microstates are equally probable. The dominance of that most probable macrostate

emerges in the limit of many independent entities. In problem 1 these entities are independent coin flips, in

problem 2 they are independent spins, and in problem 3 they are independent steps of a random walk.

1. Coin Flips. Imagine flipping an unbiased coin N times. Let NH be the number of heads results, and

f = NH/N be the fraction of such results.

(i) What is the probability of observing a particular sequence of heads (H) and tails (T) results, e.g.,

H T T T T H H T T H H T H... ?

Each coin flip has two possibilities, so there are 2N possible sequences of N coin flips. Each

sequence is equally likely, so a particular sequence has probability 1/2N .

(ii) How many possible flip sequences yield exactly NH heads results? Your answer should involve

the factorial function, M ! ≡ M × (M − 1)× (M − 2)× . . .× 3× 2× 1.

Think of the N different coin flips as N slots, each of which must be assigned an H or a T. We

must place NH heads into those slots. The first H has N possible places to go, the next N − 1,

and so on. Hence we might suspect there will be N ! possible ways to put the H’s into the N
slots. This, however, would be overcounting. Why? Because we do not really keep track of

the order. In other words, if the first H is assigned to slot 1 and the second H is assigned to

slot 2, it yields the same result as the first H going into 2 and the second H going into 1. We’re

aiming to count the number of final configurations, not the number of ways to get to those final

configurations (in which case the order would matter). To prevent the overcounting, we must

divide by the number of ways to shuffle the NH H’s around their slots, NH!, and by the number

of ways to shuffle the N −NH T’s around in their slots, (N −NH)!. Hence the final result is:

N !

NH!(N −NH)!
.

(iii) Write an exact equation for the probability P (NH) of observing NH heads results when the coin

is flipped N times.

From (i), we have the probability of each configuration. From (ii), we have the number of

configurations yielding NH H’s. Combined, we get

P (NH) =
1

2N
N !

NH!(N −NH)!
.

(iv) Stirling’s approximation,

lnM ! ≈ M lnM −M for largeM,

allows you to simplify your result in part (iii) assuming N is very large. First, we consider a hand-

wavy way to “derive” Stirling’s approximation. We know that the integral of a function g(x) can be
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approximated by a Riemann sum:

∫ b

a
dx g(x) ≈

(b−a)/∆x
∑

i=0

g(a+ i∆x)∆x

when ∆x is sufficiently small. If b− a ≫ 1, ∆x = 1 can be small enough for a good approximation

of the integral. Follow this line of argument to show Stirling’s approximation. (Hint: you will want to

consider g(x) = lnx and an appropriate choice of a and b.)

lnM ! = ln 1 + ln 2 + . . . lnM ≈
∫ M

0
dx ln x = (x lnx− x)|M0 = M lnM −M.

The Riemann sum step is effectively doing a right rectangle method.

(v) Armed with Stirling’s approximation, show that P (NH) can be written in the large deviation form

P (NH = fN) ∝ e−NI(f)

when N is sufficiently large to justify Stirling’s approximation. Identify and plot I(f) as a function of

f . [Please plot this and future plots using a computer. If you feel uncomfortable doing so, see Problem

Set 0 and/or BiasedCoinFlip.ipynb for additional help.] Notice that I does not depend on N . In other

words the extensive (large) part of the problem has dropped out and only impacts the probability

through the factor that multiplies I . This is a major simplification! You might have thought that the

term in the exponent should have higher powers of N , but it does not.

From (iv) we have N ! ≈ NNe−N , so

P (NH) ≈
1

2N
NNe−N

NNH

H e−NH(N −NH)N−NHe−N+NH

=
1

2N
NN

NNH

H (N −NH)N−NH

=
1

2N
NN

(Nf)Nf (N −Nf)N−Nf

=
1

2N
NN

NNfNN−NffNf (1− f)N−Nf

=
1

2N
1

fNf (1− f)N(1−f)

= e−N [ln 2+f ln f+(1−f) ln(1−f)].

The final term in the square brackets is I(f), which we plot here:
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(vi) For N = 5, 10, and 15, plot e−NI(f) on the same plot. Observe the very rapid concentration at

f = 0.5. You will probability find that it is helpful to normalize the curve for each value of N so

you can be looking at an approximation for the probability distribution (rather than something which

is merely proportional to a distribution). You should see that measurements of f become more and

more deterministic as N increases. We explore this point further in the next problem.

The plot I asked for looks like this:

though it is a little more instructive to look at the normalized version:
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In retrospect, the point would have been made a little more clearly if I had asked you to plot

things for even larger values of N .

2. A Macroscopic Number of Spins. Now imagine the physical scenario of making a single mea-

surement (as opposed to repeated coin flips) of N ≫ 1 noninteracting spin-1/2 particles. In that

measurement, the observed z-component of each spin is up or down with equal probability.

(i) What is the probability P (f) of observing a fraction f = Nup/N of up spins in a given observa-

tion? Write your answer in terms of the fraction f and the number of spins N .

The independent coin flips in problem 1 were repeated, one after while these spins are mea-

sured all at once. However, if the spins are truly noninteracting, it doesn’t matter that they’re

measured simultaneously. Their states are still indpendent of the other spins, just like the coin

flips. Hence the large-N limiting probability distribution is well-approximated by

P (Nup) ≈ e−N [ln 2+f ln f+(1−f) ln(1−f)].

(ii) Although f = 1/2 is the most likely observation, a typical measurement will not yield exactly half

the spins pointing up. For Avogadro’s number of spins, N ≈ 1024, estimate the relative probability

of a small deviation δ = 10−7 from the ideal fraction, i.e., calculate P (f = 0.5 + δ)/P (f = 0.5).
Your numerical answer need not be highly accurate; just determine the order of magnitude. (For this

purpose, Taylor expansion of lnP about δ = 0 is both permitted and a good idea).

Notice that the relative probability of measuring f = 0.5 + δ to the probability of measuring

f = 0.5 is given by

P (f = 0.5 + δ)

P (f = 0.5)
≈ e−N [I(0.5+δ)−I(0.5)].

It is the exponent that we handle with a Taylor series expansion.

I(0.5 + δ) − I(0.5) ≈ I ′(0.5)δ +
1

2
I ′′(0.5)δ2 +O(δ3),
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where

I ′′(f) =
∂

∂f
[ln f + 1− ln(1− f)− 1] =

∂

∂f
[ln f − ln(1− f)] =

1

f
+

1

1− f
.

Thus I ′′(0.5) = 4 and

P (f = 0.5 + δ)

P (f = 0.5)
≈ e−1024·10−14

·2 ≈ e−2·1010 .

This is a very tiny number, meaning it is exceedingly unlikely to measure a value of f which

deviates appreciably from the expected value of f = 0.5.

(iii) For finite N , only discrete values of f are possible, but in the limit of large N , P (f) approaches

a Gaussian distribution of the form

ρ(f) =
1√
2πσ2

exp

(

−(f − µ)2

2σ2

)

with mean µ and variance σ2. In that limit, f is continuous rather than being limited to the discrete

values 0, 1/N, 2/N, . . . , 1. Using your Taylor expansion from (ii), determine µ and σ2 to obtain the

probability distribution for P (f) in the large N limit. With an appropriate change of coordinates,

also determine the large N (Gaussian) limit for P (Nup). To make sure you have changed coordinates

correctly, confirm for yourself that your expression for ρ(Nup) is normalized.

Note: passing from discrete to continuous probability distributions can be a little subtle. Technically

ρ(f) is not the probability of observing f ; rather the probability of observing a ≤ f ≤ b is given by

P (a ≤ f ≤ b) =

∫ b

a
df ρ(f).

We have found from 2(i) and 2(ii) that

ρ(f) ∝ e−NI(f), I(f) ≈ 2(f − 0.5)2.

Combining these results yields

ρ(f) ∝ e−2N(f−0.5)2 .

Recalling that a normalized Gaussian distribution for the random variable X has density

ρX(x) =
1√
2πσ2

e−(x−µ)2/(2σ2),

where µ is the mean of X and σ2 the variance of X, we can construct a similar density for

f . By matching terms in the exponential argument, we identify σ2 = 1/(4N) and hence the

normalization factor
√

2N/π, giving rise to the normalized density

ρ(f) =

√

2N

π
e−2N(f−0.5)2 .

In order to find the distribution for Nup, we simply perform the change of variables Nup =
Nf . Notice that we cannot simply substitute f = Nup/N in ρ(f) to obtain ρ(Nup). This is
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because the density is not invariant under a change of variables, unlike the probability, which

is. (Probability is conserved.) Thus, when changing variables, the appropriate equation for

doing so must involve an equality of probabilities; that is,

ρ(f) |df | = ρ(Nup) |dNup| ⇐⇒ ρ(Nup) = ρ(f)

∣

∣

∣

∣

df

dNup

∣

∣

∣

∣

,

so we must, in addition to substituting f = Nup/N , multiply the distribution by an additional

factor, essentially the Jacobian for the transformation.

We thus obtain

ρ(Nup) =

√

2

Nπ
e−2(Nup−0.5)2/N .

If we had forgotten about the Jacobian and had simply substituted Nup = Nf , the integral over

the distribution would have been N rather than 1—our transformation essentially stretches the

density by a factor of N in the x-direction, because a fraction f = 0.5 corresponds to a number

Nup = 0.5N , and naturally the integral over the distribution also stretches by a factor of N .

The Jacobian fixes this problem.

(iv) The fraction of up spins f is intensive whereas the total number of up spins Nup is extensive.

Imagine recording both f and Nup from a measurement of a macroscopic system. Does the variance

of your measurements increase or decrease as the system is made bigger? Base your answer on your

distributions from (iii). You may find that the variance behaves differently for intensive and extensive

measurements.

We imagine measuring all of the N spins in one measurement. That returns a single value of

f and Nup. Now imagine repeating that measurement many times. Those repeated measure-

ments return values of f and Nup which are effectively drawn from the distributions P (f) and

P (Nup) from part (iii). The Gaussian distribution describing P (f) has mean 1/2 and vari-

ance 1/(4N), while the Gaussian distribution describing P (Nup) has mean N/2 and variance

N/4 (see problem 3). Thus we see that the variance of f measurements decreases as N in-

creases, meaning we become more and more certain of the result. Indeed, we saw in (ii) that

the chances of deviating very far from f = 1/2 become exceedingly unlikely. In contrast, the

measurement of Nup has a variance which grows proportionally to N . These are very general

observations. Intensive variables (like f ) have fluctuations which decay rapidly, so rapidly

that in large systems it makes sense to characterize them by their average value and ignore

the fluctuations altogether. The study of those expectation values is effectively the study of

thermodynamics. More on this as the course proceeds.

(v) You may have noticed in (iii) that by moving from discrete to continuous f in the large N limit,

we have inadvertently allowed f to range from −∞ to ∞. Argue that this is not a problem.

Many possible solutions. Formally and quantitatively, one may integrate the distribution in

the interval (−∞, 0] ∪ [1,∞) to show that its contribution to the density is negligible and

decreases exponentially in N . More qualitatively, one might simply calculate the value of the

density at f = 0 or f = 1 and hand-wavingly argue that the density would be so small as to

be insignificant beyond the boundary. The purpose of this problem is simply to explore more
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deeply the ramifications of the various, seemingly innocuous assumptions that we make.

3. A Random Walk. In class we discussed deterministic models for dynamics that had their origins

in physics. Suppose, however, that you have a fluorescent protein in solution and every ∆t units of

time you make a measurement of the protein’s location. For simplicity, we will focus on a single

dimension, tracking only the x coordinate of the protein. You might reason that the effect of all the

solvent molecules is to randomly bump against the protein causing it to move a little bit to the left or

a little bit to the right every ∆t. That reasoning leads to a probabilistic model for the dynamics which

is known as a 1d random walk. With probability 1/2 the protein moves to the right by a distance l
and with probability 1/2 it moves left by the same distance. (To make things easy on you, I have not

allowed the particle to stay at its original position in a step of duration ∆t. If this disturbs you, feel

free to solve that model as well, and you’ll see the same sort of behavior!)

(i) Let the position of the protein at the initial time be 0. Use your results from Problem 1 to determine

the probability distribution PN (X) that the protein is at position X after N steps.

We can map coin tosses to this problem as follows: Flip a coin. If it shows heads, move right,

else, move left. The final position is then the difference between the number of heads and tails,

divided by the length of each step:

X

l
= NH −NT ⇐⇒ NH =

N

2
+

X

2l
,

where in deriving the expression for NH we have also used the identity NH +NT = N . Then,

it suffices to plug this result into the exact result of 1.iii,

P (X) = P

(

NH =
N

2
+

X

2l

)

= 2−N

(

N

N/2 +X/(2l)

)

.

Notice that, even though fractions appear in this equation for NH , NH only takes on integer

values because N and X are always of the same parity, which is itself because the walker’s

position must alternate between even and odd values every step.

(ii) According to Problem 2, we should expect PN (X) to tend toward a Gaussian distribution in the

limit of a large number of steps. Determine the Gaussian ρ(X) in terms of N and l.

From 2(iii),

ρ

(

Nup =
N

2
+

X

2l

)

dNup =

√

2

πN
e−X2/(2Nl2) dX

2l
=

√

1

2πNl2
e−X2/(2Nl2) dX.

Because ρ(Nup) dNup = ρ(X) dX, we must have

ρ(X) =

√

1

2πNl2
e−X2/(2Nl2).

(iii) After N steps the average position is given by

〈X〉 =
∑

X

XPN (X),
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where the sum includes all allowed values of X. In the large N limit, this average becomes the

integral:

〈X〉 =
∫

dX Xρ(X).

What is the average position as a function of N and l?

The mean is 0, by symmetry—the protein moves left and right with equal probability. In terms

of (fair) coin tosses, heads and tails are equally likely. Mathematically, this is represented by

the fact that the integrand for the mean is odd, whereas the range of integration is even, so

the integral must vanish. This can be confirmed by evaluating the Gaussian integral directly,

which is worth doing at least once.

(iv) After N steps the variance in the position is given by

〈

δX2
〉

≡
〈

(X − 〈X〉)2
〉

=
∑

X

(X − 〈X〉)2 PN (X).

In the large N limit, this variance becomes the integral

〈

δX2
〉

=

∫

dX (X − 〈X〉)2 ρ(X).

What is the variance as a function of N and l?

Notice that this is not zero, because even though the protein isn’t biased on average, it does

move around. Comparing the exponential argument of the probability distribution derived in

3(ii) to that of a Gaussian yields

σ2
X = 〈δX2〉 = Nl2.

One can also perform the Gaussian integral directly (easiest by differentiating under the inte-

gral sign, though I expect integration by parts might also work). Alternatively, one can notice

that each step is independent, X is the sum of all these steps, and the variance of the sum of

independent random variables is the sum of the variance of each random variable. The variance

of one step is straightforward to calculate by definition (you get l2), and there are N steps, so

the overall variance is Nl2, as has been derived in a couple of different ways here.

(v) A diffusion constant D is a measure of how quickly the probability distribution for a particle’s

position spreads out. Specifically (for a one-dimensional problem),
〈

δX2
〉

= 2Dτ , where τ is the

total elapsed time. What is D in terms of ∆t and l?

From 3(iv), 〈δX2〉 = Nl2. Realizing that τ = N∆t, we have

〈δX2〉 = τ l2

∆t
= 2

(

l2

2∆t

)

τ =: 2Dτ ⇐⇒ D :=
l2

2∆t
.
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