
Chem 444 Problem Set 8 Due: Wednesday, November 25

1. Wait, are we talking about magnets or fluids? Or both?! In class we introduced the Ising model.

We considered a lattice of N spins, each pointing either up (s = 1) or down (s = −1). The spins

interact with an external magnetic field and with their neighboring spins such that the total energy is

given by

EIsing = −h
∑

i

si − J
∑

i<j

′

sisj , (1)

where the prime on the summation sign is shorthand to indicate that we are only including spins for

which i and j are at neighboring sites. Unlike our models with independent (decoupled) degrees

of freedom, J causes the various spins to be coupled together. A consequence is that the partition

function no longer factorizes into a product of single-particle terms. Rather,

Q(β,N, h) =
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

eβh
∑

i si+βJ
∑

′

i,j sisj . (2)

The Ising model is a lattice model, and in this class we have also talked about lattice models for gases.

In particular, we have split up space into cells which are so small that they house zero or one particle.

Unlike the Ising spins which take values ±1, each of our lattice gas cells took the value n = 0 or

n = 1. You have always thought it was crazy that we acted like neighboring cells wouldn’t influence

each other. After all, if there is a van der Waals attraction between our gas molecules, then the presence

of a molecule in one cell would decrease the energy if another molecule is in the neighboring cell. Let

us model that attraction as an attractive energy

Elattice gas = −ǫ
∑

i<j

′

ninj. (3)

(i) Show that this form of Elattice gas corresponds to a decrease in energy of ǫ when two neighboring

cells i and j are occupied, but that it contributes nothing to the energy in the other three cases—when

neither cell is occupied, only cell i is occupied, or only cell j is occupied.

(ii) A microstate ν of the lattice gas corresponds to a vector (n1, n2, . . . , nN) = (1, 0, . . . , 1) that

specifies the state of every cell. Let us assume that the gas can exchange energy and particles with the

outside world but that the volume is fixed. In that case the possible microstates can have a fluctuating

value of Elattice gas and a fluctuating value of N =
∑

i ni. In terms of the grand canonical partition

function Ξ(β,N, µ) for this lattice gas, what is the probability of microstate ν?

(iii) Develop an explicit mapping between the Ising problem and the lattice gas problem to relate Q
and Ξ. In particular, derive the precise relationship between the Ising paramters h, and J and the

lattice gas parameters µ and ǫ. Assume the spins/cells are in d-dimensional space.

2. The Ising model in one dimension. One of the core predictions of the theory of phase transitions is

that the ordering of microscopic degrees of freedom changes dramatically as a function of tempera-

ture. In the Ising picture, this dramatic change corresponds to a transition from aligned spins at low

temperature to disordered spins at high temperature. In the lattice gas picture, it is a change from a

liquid with 〈n〉 ≈ 1 to a gas with 〈n〉 ≈ 1. Here we will focus on the Ising magnet in one dimension

(you could map these results over to the liquid/vapor context using problem 1).

Chem 444, Fall 2020 1

(i) First imagine that you already know how to compute Q(β,N, h). Express 〈s〉 = N−1〈
∑

i si〉 as a

derivative of lnQ.

(ii) For the one-dimensional Ising model it is possible to perform that computation of Q via an ac-

counting trick with the so-called transfer matrix

T =

(

eβ(J−h) e−βJ

e−βJ eβ(J+h)

)

(4)

Take, as a simple example, an Ising model with periodic boundary conditions and with N = 3 sites.

Then Q is a sum over eight possible microstates: (1, 1, 1), (1, 1,−1), . . . , (−1,−1,−1). Explicitly

show that Q computed from Eq. (2) is equal to Tr(T 3), where Tr is the trace of the matrix.

(iii) Let D be a diagonalizing matrix such that Λ = D−1TD is the diagonal matrix with the eigenval-

ues of T along the diagonal and zero off the diagonal. Using your earlier work and the cyclic property

of the trace (which you need not explicitly prove here), show that Q(β,N, h) = Tr(ΛN).

(iv) The trace from (iii) results in a sum of two matrix elements. Argue that one of those terms will

vanish in the limit of large N , to yield the large-N limit of Q(β,N, h).

(v) Combine your answers to (i) and (iv) to determine 〈s〉 as a function of β in the absence of an

external magnetic field (h = 0). If possible, identify the temperature of the phase transition between

ordered and disordered states. Otherwise, explain why it is not possible to find such a temperature.

3. Mean field theory. Computing the exact partition function in more than one dimension is very hard

(Lars Onsager famously did this in the 1940s for the two-dimensional H = 0 Ising model). But there

are various ways to approximate Q. One strategy for approximating Q is to use a computer to sample

many possible microstates, the focus of next week’s problem set. The advantage of a computational

approach is that it can be made arbitrarily accurate, meaning you could systematically improve your

estimate for Q by spending more computer time. In contrast, there is an uncontrolled approximation

scheme called mean field theory that has the benefit of being tractable with pen and paper.

The idea behind mean field theory is simple. Spin i has four neighbors, each of which can either be

+1 or −1. Assume instead that these neighbors all equal their average value 〈s〉. Then the effect of

the neighboring spins is replaced by their average effect (the mean field that they impose on spin i).
As a consequence, we approximate spin i as being decoupled from the other spins but in the presence

of an augmented external field of strength h+ 4J〈s〉.

(i) Express 〈s〉 in terms of a derivative of lnQ.

(ii) Find the canonical partition function for N independent spins, each in a field of strength h+4J〈s〉.

(iii) Combine your results to (i) and (ii) to get a self-consistent expression for 〈s〉. In other words,

obtain an equation of the form

〈s〉 = f(〈s〉) (5)

for some function f which you will find.

(iv) Numerically solve your equation in (iii) for the h = 0 case to generate a plot of 〈s〉 versus

temperature. Does this plot display a phase transition? If so, at what temperature?

The final problems involve Monte Carlo sampling of the Ising model in one and two dimensions. If

you really don’t want to use python and would rather write your own code from scratch, you can skip

problems 4 and 5. Otherwise, problems 4 and 5 should help walk you through the programming.

Chem 444, Fall 2020 2

4. Monte Carlo simulation of the one-dimensional Ising model.

Open Ising1D.ipynb to find my code for simulating and visualizing a 1D Ising model at inverse tem-

perature β. This code simulates L = 40 spins with periodic boundary conditions. Let’s pass through

the code block by block.

First, you import some packages. Nothing significant to say here.

1 # Import some packages that we will use

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 import numpy as np

5 plt.style.use(’default’)

(i) Next, you define lists of 40 spins to represent the configuration.

1 # Store three different types of configurations as a demonstration

2

3 # down_Config will be a configuration with every spin equaling -1

4 # up_Config will be a configuration with every spin equally +1

5 # random_Config will be a configuration with every spin randomly set equal to

6 # either +1 or -1

7

8 L = 40; # Length of the 1d grid

9

10 # Make the down_Config. Note that np.zeros(L) will return a vector of all 0’s

11 # and Python is smart enough to know that subtracting the scalar 1 from the

12 # vector should really subtract 1 from each element of the zero vector.

13 down_Config = np.zeros(L) - 1;

14

15 # Make the up_Config based on the down_Config

16 up_Config = np.copy(down_Config) + 2;

17

18 # Make the random_Config. I start by copying the down_Config because it is a

19 # quick and easy way to make the random_Config vector be the right have the

20 # correct size

21 random_Config = np.copy(down_Config);

22 for i in range(L):

23 ### EXPLAIN THE NEXT LINE ###

24 random_Config[i] = 2 * np.random.randint(2) - 1

25

26 print(’Here is a configuration of all down spins:’)

27 print(down_Config)

28 print(’Here is a configuration of all up spins:’)

29 print(up_Config)

30 print(’Here is a configuration of random spins:’)

31 print(random_Config)

Explain what is happening in line 24. What is randint doing and why are we multiplying by 2

and subtracting one?

(ii) Next we define a function that graphically plots the spins to make them easier to visualize.

1 # Write a function to plot the spin configuration

2 def plotConfig(config, L):

3 ### EXPLAIN THE NEXT LINE ###

4 plt.imshow(np.resize((config + 1)/2, (1,L)), vmin=0, vmax=1, \

5 cmap=plt.cm.Greys);

6 plt.axis(’off’);

7

Chem 444, Fall 2020 3

8 # Use the plotting function

9 plotConfig(random_Config, L)

Explain what is happening in lines 4-5. Specifically, why do I use (random Config + 1)/2 and not

just random Config?

(iii) To compute the energy of a spin configuration, we will need to be able to sum over the nearest

neighbors. Toward this end, it would be nice to have a function that returns the location of the neigh-

boring spins. For example, I’d like to be able to know that spin number 5 is next to spins 4 and 6. It

seems this function would be trivial, it should just return i + 1 and i − 1, but the following code is a

little more complicated. Here is one way.

1 # Write a function to compute the index for spin i’s neighbors

2 def neighbors1d(i, L):

3 ### EXPLAIN THE NEXT LINES ###

4 if i==0:

5 neighbor1 = L-1

6 else:

7 neighbor1 = i-1

8 if i==L-1:

9 neighbor2 = 0

10 else:

11 neighbor2 = i+1

12 return [neighbor1, neighbor2]

Explain the purpose of the if/else statements. Why did we not just set neighbor1 to i− 1 and set

neighbor2 to i+ 1?

(iv) Next we define two different energy functions.

1 # Compute the contribution of spin i to the total energy

2 def energy1spin(i, L, h, J, config):

3 energy = -h * config[i]

4 for neighbor in neighbors1d(i,L):

5 # Notice that we have J/2 rather than J since we will count up

6 # the i-j interaction for spin i *and* for spin j.

7 energy -= (J/2) * config[i]*config[neighbor]

8 return energy

9

10 # Compute the total energy of a configuration

11 def energy(L, h, J, config):

12 energy = 0

13 for i in range(L):

14 energy += energy1spin(i, L, h, J, config)

15 return energy

The first energy function computes the contribution from spin i. The second function sums over all of

the possible i values to give the total energy. You will see why I separately defined energy1spin later.

For now, we check that the energy function is working properly.

1 # Let’s check that the energy function is working correctly

2

3 LCheck = 4

4 config1 = [1, 1, 1, 1]

5 config2 = [1, -1, 1, -1]

6 config3 = [1, -1, -1, -1]

7

8 print(’When h = 0 and J = 1...’)

9 print(’The energy of ’, config1, ’ is ’, energy(LCheck, 0, 1, config1))

Chem 444, Fall 2020 4

10 print(’The energy of ’, config2, ’ is ’, energy(LCheck, 0, 1, config2))

11 print(’The energy of ’, config3, ’ is ’, energy(LCheck, 0, 1, config3))

12

13 print(’\nWhen h = 1 and J = 0...’)

14 print(’The energy of ’, config1, ’ is ’, energy(LCheck, 1, 0, config1))

15 print(’The energy of ’, config2, ’ is ’, energy(LCheck, 1, 0, config2))

16 print(’The energy of ’, config3, ’ is ’, energy(LCheck, 1, 0, config3))

Work out the energy of the 4-spin configurations config1, config2, and config3 by hand to com-

pare with the output of the code.

(v) Finally we run the main Monte Carlo loop.

1 # This is the main Monte Carlo loop!

2

3 # Start with a random configuration

4 config = np.copy(random_Config);

5

6 # Set up the Hamiltonian you want to sample

7 J = 1;

8 h = 0;

9 beta = 1;

10

11 # Store the initial energy

12 old_energy = energy(L, h, J, config);

13

14 # Configurations will be added to this empty list so you can make a movie

15 # of the visited configurations

16 stored_configs = []

17

18 # Perform 100000 Monte Carlo steps

19 num_mc_steps = 100000;

20

21 # Create a vector to store the values of m

22 mag_values = np.zeros(num_mc_steps);

23

24 # Loop over the Monte Carlo steps

25 for mcstep in range(num_mc_steps):

26

27 # Pick a random spin to flip

28 index_for_spin_flip = np.random.randint(L);

29 # Flip that spin

30 config[index_for_spin_flip] *= -1;

31

32 # Compute the energy for the new configuration

33 new_energy = energy(L, h, J, config);

34

35 # Compute the change in energy due to the spin flip

36 delta_energy = new_energy - old_energy;

37

38 # Calculate the probability of accepting the move

39 acceptance_probability = min(1, np.exp(-beta * delta_energy))

40

41 # Draw a random number between 0 and 1 to determine whether or not to

42 # accept the move

43 if np.random.random() < acceptance_probability:

44 # we already flipped the spin, so we only need to update the energy

45 old_energy = new_energy;

46 else:

Chem 444, Fall 2020 5

47 # Since the spin flip is rejected we retain the old energy but need to

48 # flip the spin back

49 config[index_for_spin_flip] *= -1;

50

51 # compute m for the configuration

52 mag_values[mcstep] = np.sum(config) / len(config);

53

54 # Store every 1000 configurations. You could adjust this if you feel like you

55 # have too many or too few frames

56 if (mcstep % 1000 == 0):

57 stored_configs.append(np.copy(config))

Discuss what line 43 is doing.

(vi) The remaining blocks of code plot the magnetization and generate a movie of configurations that

are visited during the Monte Carlo sampling. My default parameters used β = 1, J = 1, h = 0.

Based on problem 2 (with the transfer matrices), do you expect the typical configurations to be

ordered (m = ±1) or disordered (m = 0)? Run the code to check.

5. Monte Carlo simulation of the two-dimensional Ising model. Open Ising2D.ipynb to find the basic

framework for code that will simulate and visualize a 2D Ising model at inverse temperature β. This

code simulates L2 = 20 × 20 spins with periodic boundary conditions. Let’s pass through the code

block by block. This time there will be some parts that you need to write to make it work!

We start with a very similar structure but now the list of spins must have L2 elements. I store the

spins in a single 1D list, which will require us to think a little bit when figuring out which spins are

neighbors on the 2d grid. The following block of code would print out some of these lists for the

configurations with 20× 20 spins.

1 # Import some packages that we will use

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 import numpy as np

5 plt.style.use(’default’)

6

7 # Store three different types of configurations as a demonstration

8

9 # down_Config will be a configuration with every spin equalling -1

10 # up_Config will be a configuration with every spin equally +1

11 # random_Config will be a configuration with every spin randomly set equal to

12 # either +1 or -1

13

14 L = 20; # Length of the 2d grid

15

16 # Make the down_Config. Note that np.zeros(L*L) will return a vector of all 0’s

17 # and Python is smart enough to know that subtracting the scalar 1 from the

18 # vector should really subtract 1 from each element of the zero vector.

19 down_Config = np.zeros(L*L) - 1;

20

21 # Make the up_Config based on the down_Config

22 up_Config = np.copy(down_Config) + 2;

23

24 # Make the random_Config. I start by copying the down_Config because it is a

25 # quick and easy way to make the random_Config vector be the right have the

26 # correct size

27 random_Config = np.copy(down_Config);

28 for i in range(L*L):

29 random_Config[i] = 2 * np.random.randint(2) - 1

Chem 444, Fall 2020 6

30

31 print(’Here is a configuration of all down spins:’)

32 print(down_Config)

33 print(’Here is a configuration of all up spins:’)

34 print(up_Config)

35 print(’Here is a configuration of random spins:’)

36 print(random_Config)

I also updated the plotting function that will let you look at a 2D grid of spins.

1 # Write a function to plot the spin configuration

2 def plotConfig(config, L):

3 # The only thing that has changed from the 1D code is that (1, L)

4 # became (L, L)

5 plt.imshow(np.resize((config + 1)/2, (L,L)), vmin=0, vmax=1, \

6 cmap=plt.cm.Greys);

7 plt.axis(’off’);

8

9 # Use the plotting function

10 plotConfig(random_Config, L)

(i) As I indicated, it will be a little harder to compute the neighbors in 2D. We can leverage the 1D

function that we already wrote in the following manner.

1 # Write a function to compute the index for spin i’s neighbors

2 def neighbors1d(i, L):

3 if i==0:

4 neighbor1 = L-1

5 else:

6 neighbor1 = i-1

7 if i==L-1:

8 neighbor2 = 0

9 else:

10 neighbor2 = i+1

11 return [neighbor1, neighbor2]

12

13 # Write a function to compute the index for spin i’s neighbors

14 def neighbors2d(i, L):

15 row = int(np.floor(i / L))

16 column = i - (row * L)

17

18 [leftcol, rightcol] = neighbors1d(column, L)

19 [downrow, uprow] = neighbors1d(row, L)

20

21 upneighbor = (uprow * L) + column;

22 downneighbor = # FILL THIS IN;

23 leftneighbor = # FILL THIS IN;

24 rightneighbor = (row * L) + rightcol;

25 return [leftneighbor, rightneighbor, upneighbor, downneighbor]

Fill in the right hand side of lines 22 and 23 to complete the neighbors2d function. You may

want to run the function with some test cases to confirm that it works properly.

(ii) The energy computation can be implemented in a manner that is very similar to 1D case.

1 # Compute the contribution of spin i to the total energy

2 def energy1spin(i, L, h, J, config):

3 energy = -h * config[i]

4 for neighbor in neighbors2d(i,L):

5 # Notice that we have J/2 rather than J since we will count up

Chem 444, Fall 2020 7

6 # the i-j interaction for spin i *and* for spin j.

7 energy -= (J/2) * config[i]*config[neighbor]

8 return energy

9

10 # Compute the total energy of a configuration

11 def energy(L, h, J, config):

12 energy = 0

13 for i in range(L*L):

14 energy += energy1spin(i, L, h, J, config)

15 return energy

Identify and explain every difference between these two energy functions and the 1D versions of

Problem 1(iv).

(iii) As in Problem 1(iv), we want to check that our energy is computed correctly. Since you’re really

using my energy function from part (ii), you can view this as a test of your nearest neighbor function

from part (i).

1 # Let’s check that the energy function is working correctly

2

3 config1 = np.zeros(9)+1

4 config2 = np.copy(config1)

5 for spin_index in range(9):

6 config2[spin_index] = np.random.randint(2)*2 - 1

7

8 print(’When h = 0 and J = 1...’)

9 print(’The energy of ’, config1, ’ is ’, energy(3, 0, 1, config1))

10 plotConfig(config1, 3)

11 plt.show();

12 print(’The energy of ’, config2, ’ is ’, energy(3, 0, 1, config2))

13 plotConfig(config2, 3);

14 plt.show();

15

16 print(’\nWhen h = 1 and J = 0...’)

17 print(’The energy of ’, config1, ’ is ’, energy(3, 1, 0, config1))

18 plotConfig(config1, 3);

19 plt.show();

20 print(’The energy of ’, config2, ’ is ’, energy(3, 1, 0, config2))

21 plotConfig(config2, 3);

22 plt.show();

Work out the energy of the 9-spin configurations config1 and config2 by hand to compare with

the output of the code.

(iv) The Monte Carlo steps proceed in a manner that is very similar to the 1D code, but we will want

to make one critical change. It will be wasteful to compute the full energy before and after a spin

flip. The reason for this is that every computation of an energy requires you to add up the contribution

from spin 1, from spin 2, from spin 3, etc., but in a single move you are only changing a single spin!

We should be able to use our function energy1spinflip to more rapidly determine delta energy.

1 # This is the main Monte Carlo loop!

2

3 # Start with a random configuration

4 config = np.copy(random_Config);

5

6 # Set up the Hamiltonian you want to sample

7 J = 1;

8 h = 0;

Chem 444, Fall 2020 8

9 beta = 1;

10

11 # Store the initial energy

12 old_energy = energy(L, h, J, config);

13

14 # Configurations will be added to this empty list so you can make a movie

15 # of the visited configurations

16 stored_configs = []

17

18 # Perform 100000 Monte Carlo steps

19 num_mc_steps = 100000;

20

21 # Create a vector to store the values of m

22 mag_values = np.zeros(num_mc_steps);

23

24 # Loop over the Monte Carlo steps

25 for mcstep in range(num_mc_steps):

26

27 # Pick a random spin to flip

28 index_for_spin_flip = ### FILL THIS IN ###

29

30 # Compute the old contribution to the energy from spin i

31 old_energy = energy1spin(index_for_spin_flip, L, h, J, config)

32

33 # Flip that spin

34 ### FILL THIS IN ###

35

36 # Compute spin i’s contribution to energy for the new configuration

37 new_energy = ### FILL THIS IN ###

38

39 # Compute the change in energy due to the spin flip

40 # Notice the factor of 2, which was needed because we have to count the way

41 # flipping i changes the (J/2) factor that energy1spin attributed to spin i

42 # but also the (J/2) factor that energy1spin attributed to spin j

43 delta_energy = 2 * (new_energy - old_energy);

44

45 # Calculate the probability of accepting the move

46 ### FILL THIS IN ###

47

48 # Draw a random number between 0 and 1 to determine whether or not to

49 # accept the move

50

51 ### FILL THIS IN (Several lines) ###

52

53 # compute m for the configuration

54 mag_values[mcstep] = np.sum(config) / len(config);

55

56 # Store every 1000 configurations. You could adjust this if you feel like you

57 # have too many or too few frames

58 if (mcstep % 1000 == 0):

59 stored_configs.append(np.copy(config))

Fill in the missing code to perform Metropolis Monte Carlo sampling for the 2D Ising model.

To check your code, run the following block to see how the magnetization per site evolves as a

function of the number of Monte Carlo steps.

1 # Plot the values of the magnetization, which have been stored throughout the

2 # Monte Carlo sampling in the vector mag_values

3 plt.plot(mag_values)

Chem 444, Fall 2020 9

4 plt.xlabel(r’Monte Carlo Step’, fontsize=18);

5 plt.ylabel(r’m’, fontsize=18);

6 plt.title(r’Fluctuating values of the magnetization per site’, fontsize=20);

Turn in your plot but not your code.

(v) In analogy with Problem 1(vi), you can run the final blocks of code in Ising2DFramework.ipynb

to see the probability distribution for the magnetization per site and to generate a movie of typical

configurations. If you look carefully, you will see that I only collect the samples after 40,000 Monte

Carlo steps to make sure that the initial configuration does not strongly bias the sampling. Discuss the

major difference between the behavior of the 2D Ising model and the 1D behavior you observed

(at the same temperature) in Problem 1(vi).

6. Using your Ising simulation.

(i) In the absence of an external magnetic field (i.e., h = 0), the transition to a ferromagnetic state

upon decreasing temperature is second order. In other words, the average magnetization per spin 〈m〉
changes continuously but not smoothly at T = Tc. Try to confirm this fact by computing 〈m〉 as a

function of T from several Monte Carlo trajectories above and below Tc. Estimate the sampling error

associated with each computed value of 〈m〉, and describe the procedure you use to do so. Provide

a plot of m as a function of T (showing error bars), along with snapshots of the system at a

temperature below Tc, a temperature very close to Tc, and a temperature above Tc.

(ii) Your results will differ from the exact behavior of this system (determined mathematically by Lars

Onsager) in several respects. For example, the apparent transition in your simulated system should

not occur precisely at kBTc = 2.269J . (Note that, in the code, the unit of temperature is J/kB.) The

transition should also appear smooth (rather than exhibiting a sharp kink). Explain both of these

deviations.

(iii) [Optional] Singularities at the critical point arise from correlated fluctuations of spins separated

by macroscopically large distances. Try to confirm the existence of long-ranged correlations at the

critical point by computing c(rij) = 〈sisj〉 − 〈si〉〈sj〉 as a function of rij = |ri − rj| (the distance

between spins i and j) at several temperatures above and below the critical point. Plot your results.

[Note: To accurately sample with T ≈ Tc you have to generate quite a few Monte Carlo samples, so

it’s a little harder to carry out this problem. I’ve made it optional, but I encourage those who expect

to use computers in their research to embrace the challenge.]

Chem 444, Fall 2020 10

