
Chem 444 Problem Set 6 Due: Friday, November 6

1. A two-state system. Remarkably, the decomposition between system and bath (as well as our count-

ing tools with partition functions) work equally well in a quantum setting as in a classical setting. In

fact, you may even prefer thinking about partition functions for quantum mechanical objects because

an integral over all possible continuous classical microstates is replaced by a sum over quantized

possibilities. In this problem, we consider the simplest quantized problem: a two-state system.

(i) In the presence of a magnetic field, a 1H atom’s nuclear spin can adopt one of two states that we

call “up” or “down”. We orient our field so that the nuclear spin aligns with the down state’s nuclear

spin. The magnetic field splits the energetic degeneracy of the up and down states, as described by

the Zeeman effect. Let us call the ground state energy ǫ0 and the excited state energy ǫ0 + ǫ. The spin

can switch between up and down states by exchanging energy with a thermal bath at temperature T .

In terms of ǫ0, ǫ, T, and Boltzmann’s constant kB, what is the probability of the down state, pdown?

What is the probability of the up state, pup?

(ii) Plot the equilibrium probability of occupying the down (ground) state as a function of temperature.

Label θ ≡ ǫ/kB on the x-axis. Discuss the low-temperature and high-temperature limits of pdown.

What is the physical interpretation of θ?

(iii) Using your expressions for pup and pdown, calculate the expected energy 〈E〉 in terms of ǫ0, ǫ, kB
and T .

(iv) An alternative way to compute the expected energy is to compute

〈E〉 = −
∂ lnQ(β)

∂β
,

where Q(β) =
∑

ν e
−βE(ν) is the canonical partition function and β = 1/(kBT ). If this expression

does not look familiar, look back through your old homeworks and find where you showed that it is

true. The sum over ν includes all the microstates, but for the two-state spin system there are only two.

Give an explicit form for Q(β) then differentiate to confirm your answer to (c).

(v) Now assume there are N independent (non-interacting) spins. Compute Q(β,N) for the N -spin

system in terms of the 1-spin partition function Q(β) that you found in the previous part. Use Q(β,N)
to compute 〈E〉 for the N -spin system. How does it differ from your answer in (d)?

(vi) Recall that our study of statistical mechanics started by asserting that there is a function S =
kB ln Ω. It would usually be awkward to directly count the number of states Ω, so we would like

to sometimes be able to compute S another way. We have shown that in the thermodynamic limit,

−βA = lnQ(β,N), where A = 〈E〉 − TS is the Helmholtz free energy. Use your answers to (e) to

compute S as a function of N, kB, ǫ, and T . Plot S/(NkB) as a function of T/θ. Briefly comment

on the low-temperature and high-temperature limits (i.e., what are the limits and can they be simply

explained on physical grounds?).

2. A harmonic oscillator. Consider a one-dimensional quantum harmonic oscillator, which has equally

spaced discrete energy levels: 1
2~ω,

3
2~ω,

5
2~ω . . .. We assume the harmonic oscillator is in contact

with a large thermal bath at temperature T .

(i) As in Problem 2, the canonical partition function is Q(β) =
∑

ν e
−βE(ν), but now ν has more than

two possibilities. In fact, there is an infinite number of possibilities. Use the fact that energy levels are

equally spaced to compute the partition function in terms of ~, ω, kB, and T . [Hint: a geometric series
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can be summed exactly. Also, you can leave your answers in terms of exponential functions, but you

may find future parts of this problem to be easier if you simplify things in terms of the hyperbolic

cosecant function.]

(ii) By differentiating Q appropriately, determine the average energy 〈E〉, which should also be a

function of T .

(iii) A common experiment is to measure how much energy must be put into a system to increase the

temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy

increase with increasing temperature:

C =
∂ 〈E〉

∂T
.

By writing 〈E〉 in terms of a derivative of lnQ, demonstrate that C is related to a second derivative of

lnQ. Use this observation to compute both the typical size of the energy fluctuations
〈

δE2
〉

and the

heat capacity C . Both of these quantities should be functions of the temperature.

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-

cillator but that the oscillations in the x, y, and z dimensions are independent. Then the single three-

dimensional harmonic oscillator will behave like three one-dimensional harmonic oscillators. What

will be the new values of 〈E〉,
〈

δE2
〉

, and C for the three-dimensional oscillator. [Hint: Don’t com-

pute more than you have to! Think about how the partition functions change when you incorporate

multiple independent components.]

(v) Repeat your logic from (iv) to determine C for N three-dimensional harmonic oscillators. Ein-

stein considered this as a model for vibrations of the positions of N atoms around their equilibrium

positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be

handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how

C varied with temperature T , Einstein argued that one could infer microscopic information about the

nature of the vibrations. Pretty cool!

3. Practice connecting partition functions to thermodynamic potentials. Consider an isothermal-

isobaric ensemble of microstates in which both energy and volume are allowed to fluctuate but the

number of particles N is fixed.

(i) Following our development of the canonical ensemble in lecture, determine the probability distri-

bution P (ν) and partition function ζ(β, βp,N) for this ensemble.

(ii) By grouping together microstates with the same volume, the isothermal-isobaric partition function

can be written in the form

ζ =
∑

V

(. . .) (1)

Identify the summand that belongs in this expression.

(iii) For a macroscopic system, the sum in Eq. (1) is overwhelmingly dominated by the contribution

from a single value V ∗ of the volume. Exploiting this fact, determine a relationship between ln ζ and

basic thermodynamic quantities. Could your answer have been easily anticipated? Explain.

(iv) Compute the derivative (∂ ln ζ/∂(βp))β,N . Using this result, verify the relationship you deter-

mined in part (iii).

(v) Compute the derivative (∂2 ln ζ/∂(βp)2)β,N . Using this result, derive a relationship between

mean square volume fluctuations 〈δV 2〉 (where δV = V − 〈V 〉) and the isothermal compressibility

κT = −V −1(∂V/∂p)T,N .
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