
Chem 444 Problem Set 8 Due: Tuesday, November 26

1. Wait, are we talking about magnets or fluids? Or both?! In class we introduced the Ising model.

We considered a lattice of M spins, each pointing either up (s = 1) or down (s = −1). The spins

interact with an external magnetic field and with their neighboring spins such that the total energy is

given by

EIsing = −h
∑

i

si − J
∑

i,j

′

sisj , (1)

where the prime on the summation sign is shorthand to indicate that we are only including spins for

which i and j are at neighboring sites. Unlike our models with independent (decoupled) degrees

of freedom, J causes the various spins to be coupled together. A consequence is that the partition

function no longer factorizes into a product of single-particle terms. Rather,

Q(β,M, h) =
∑

s1=±1

∑

s2=±1

. . .
∑

sM=±1

eβh
∑

i si+βJ
∑

′

i,j sisj . (2)

The Ising model is a lattice model, and in this class we have also talked about lattice models for gases.

In particular, we have split up space into cells which are so small that they house zero or one particle.

Unlike the Ising spins which take values ±1, each of our lattice gas cells took the value n = 0 or

n = 1. You have always thought it was crazy that we acted like neighboring cells wouldn’t influence

each other. After all, if there is a van der Waals attraction between our gas molecules, then the presence

of a molecule in one cell would decrease the energy if another molecule is in the neighboring cell. Let

us model that attraction as an attractive energy

Elattice gas = −ǫ
∑

i,j

′

ninj. (3)

(i) Show that this form of Elattice gas corresponds to a decrease in energy of ǫ when two neighboring

cells i and j are occupied, but that it contributes nothing to the energy in the other three cases—when

neither cell is occupied, only cell i is occupied, or only cell j is occupied.

(ii) A microstate ν of the lattice gas corresponds to a vector (n1, n2, . . . , nM ) = (1, 0, . . . , 1) that

specifies the state of every cell. Let us assume that the gas can exchange energy and particles with the

outside world but that the volume is fixed. In that case the possible microstates can have a fluctuating

value of Elattice gas and a fluctuating value of N =
∑

i ni. In terms of the grand canonical partition

function Ξ(β,M,µ) for this lattice gas, what is the probability of microstate ν?

(iii) Develop an explicit mapping between the Ising problem and the lattice gas problem to relate Q

and Ξ. In particular, derive the precise relationship between the Ising paramters h, and J and the

lattice gas parameters µ and ǫ. Assume the spins/cells are in d-dimensional space.

2. The Ising model in one dimension. One of the core predictions of the theory of phase transitions is

that the ordering of microscopic degrees of freedom changes dramatically as a function of tempera-

ture. In the Ising picture, this dramatic change corresponds to a transition from aligned spins at low

temperature to disordered spins at high temperature. In the lattice gas picture, it is a change from a

liquid with 〈n〉 ≈ 1 to a gas with 〈n〉 ≈ 1. Here we will focus on the Ising magnet in one dimension

(you could map these results over to the liquid/vapor context using problem 1).
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(i) First imagine that you already know how to compute Q(β,M, h). Express 〈s〉 = M−1〈
∑

i si〉 as

a derivative of lnQ.

(ii) For the one-dimensional Ising model it is possible to perform that computation of Q via an ac-

counting trick with the so-called transfer matrix

T =

(

eβ(J−h) e−βJ

e−βJ eβ(J+h)

)

(4)

Take, as a simple example, an Ising model with periodic boundary conditions and with M = 3 sites.

Then Q is a sum over eight possible microstates: (1, 1, 1), (1, 1,−1), . . . , (−1,−1,−1). Explicitly

show that Q computed from Eq. (2) is equal to Tr(T 3), where Tr is the trace of the matrix.

(iii) Determine Q(β,M, h) in the limit of large M . [Hint: You will first want to generalize (ii) to M

spins. The trace is most easily computed if you first diagonalize T and use the fact that the trace is

unaffected by diagonalization.]

(iv) Combine your answers to (i) and (iii) to determine 〈s〉 as a function of β in the absence of an

external magnetic field (h = 0). If possible, identify the temperature of the phase transition between

ordered and disordered states. Otherwise, explain why it is not possible to find such a temperature.

3. Mean field theory. Computing the exact partition function in more than one dimension is very hard

(Lars Onsager famously did this in the 1940s for the two-dimensional H = 0 Ising model). But there

are various ways to approximate Q. One strategy for approximating Q is to use a computer to sample

many possible microstates, the focus of next week’s problem set. The advantage of a computational

approach is that it can be made arbitrarily accurate, meaning you could systematically improve your

estimate for Q by spending more computer time. In contrast, there is an uncontrolled approximation

scheme called mean field theory that has the benefit of being tractable with pen and paper.

The idea behind mean field theory is simple. Spin i has four neighbors, each of which can either be

+1 or −1. Assume instead that these neighbors all equal their average value 〈s〉. Then the effect of

the neighboring spins is replaced by their average effect (the mean field that they impose on spin i).

As a consequence, we approximate spin i as being decoupled from the other spins but in the presence

of an augmented external field of strength h+ 4J〈s〉.

(i) Express 〈s〉 in terms of a derivative of lnQ.

(ii) Find the canonical partition function for M independent spins, each in a field of strength h+4J〈s〉.

(iii) Combine your results to (i) and (ii) to get a self-consistent expression for 〈s〉. In other words,

obtain an equation of the form

〈s〉 = f(〈s〉) (5)

for some function f which you will find.

(iv) Numerically solve your equation in (iii) for a variety of temperatures to generate a plot of 〈s〉
versus temperature. Does this plot display a phase transition? If so, at what temperature?
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