
Chem 444 Problem Set 9 Due: Thursday, December 6

1. Building a Monte Carlo simulation of the two-dimensional Ising model. This assignment centers

on Monte Carlo simulations of a two-dimensional Ising magnet. The first part of the assignment is

to develop a Metropolis Monte Carlo code to simulate an Ising magnet at temperature T . You will

be performing simulations on a 20 × 20 lattice of spins with periodic boundary conditions. You

can either write such a simulation from scratch in a language of your choosing, or work through the

Mathematica notebook (ps9.nb) to finish developing the program that I started for you. You do not

need to submit any work for this problem, but you will need your working code to be able to work on

the next problem. (And I don’t want you downloading some completed code off the internet.)

If you choose to do the Mathematica option, read through ps9.nb line by line. You will find the

following three things to fix/fill in, after which you should have a functioning simulation code.

(i) I wrote a function called Neighbors, which, given a lattice site, determines which other lattice sites

are the nearest neighbors. I did not adequately implement the periodic boundary conditions. Fix this.

(ii) The energy function for the Ising magnet in the absence of an external field (h = 0) can be written

as

E = −J
∑

i,j

′

sisj ,

where we will set J = 1, the sum is taken over distinct pairs of nearest neighbors i and j, and si = ±1
is the state of the spin at site i. Notice that the sum could be split into two parts:

E = −
J
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where j ∈ n(i) indicates that j is taken from the set of i’s neighbors. The factor of 1/2 prevents

double counting. Without it you would be counting the interaction between spins 1 and 2 twice, first

as the s1s2 term and then as the s2s1 term. Since these two terms are identical, we include them both

and correct by the factor of 1/2. Let us call the parenthetical term in Eq. (1) the “single spin energy”

for site i. The total energy is found by combining these single spin energies for each spin in the lattice.

Where prompted in the Mathematica file, write a function to compute the single spin energy.

(iii) I implemented the Monte Carlo procedure in ps9.nb using a function I called SlowMCStep, which

computes the energy of the entire Ising magnet before and after a proposed spin flip. This implementa-

tion is wasteful. Since most of the magnet is not altered by the spin flip, most of the energy calculation

will not be affected by the flip. Write a FastMCStep function which instead uses the SingleSpinEn-

ergy function to evaluate whether or not to accept a Monte Carlo move. Your FastMCStep function

should be much faster than the slow version.

2. Using your Ising simulation. (i) In the absence of an external magnetic field (i.e., h = 0), the

transition to a ferromagnetic state upon decreasing temperature is second order. In other words, the

magnetization per spin m = N−1
〈

∑N
i=1 si

〉

changes continuously but not smoothly at T = Tc. Try

to confirm this fact by computing m(T ) from several Monte Carlo trajectories above and below Tc.

Estimate the sampling error associated with each computed value of m, and describe the procedure
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you use to do so. Provide a plot of m as a function of T (showing error bars), along with snapshots of

the system at a temperature below Tc, a temperature very close to Tc, and a temperature above Tc.

(ii) Your results will differ from the exact behavior of this system (determined mathematically by Lars

Onsager) in several respects. For example, the apparent transition in your simulated system should

not occur precisely at kBTc = 2.269J . (Note that, in the code, the unit of temperature is J/kB.)

The transition should also appear smooth (rather than exhibiting a sharp kink). Explain both of these

deviations.

(iii) Singularities at the critical point arise from correlated fluctuations of spins separated by macro-

scopically large distances. Try to confirm the existence of long-ranged correlations at the critical point

by computing c(rij) = 〈sisj〉 − 〈si〉〈sj〉 as a function of rij = |ri − rj| (the distance between spins i
and j) at several temperatures above and below the critical point. Plot your results.
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