
Chem 444 Problem Set 7 Due: Thursday, November 15

1. Reversible work of stretching a polymer.

We have considered a model for a Gaussian polymer whose average length of a polymer segment l
is a function of temperature with 〈l〉 = 1/

√
βk. As always, β = (kBT )

−1. From our derivation in

an earlier problem set (and/or the exam), you hopefully know that the probability distribution for the

separation between the endpoints of the polymer is a Gaussian with mean 0 and variance N/βk:

P (~R) =

(

βk

2πN

)3/2

exp

(

−βkR2

2N

)

.

We have discussed the reversible work principle that says that the probability distribution for a degree

of freedom x is proportional to exp[−βw(x)], where w(x2)−w(x1) is the reversible work to change

this degree of freedom from x1 to x2, implying that the reversible work required to stretch the polymer

from a compact state with end-to-end distance of R = 0 to an extended state with R = L is

W (L) =
kL2

2N
.

I have written a simulation of such a polymer being pulled apart at a finite rate (so not necessarily

reversibly). You can run the simulation on this website:

http://gingrich.chem.northwestern.edu/teaching/444/gc js/gaussianchain.html.

The simulations give you trajectories of the polymer chains of harmonically bound nearest neighbors

beads, with velocities of each bead assigned at the start of each trajectory from a Maxwell-Boltzmann

distribution. Each bead of the polymer experiences forces from the neighboring beads, trying to pull

the neighbors closer together, but it also feels random “kicks” from the environment. These kicks are

meant to mimic the forces from molecules in a fixed-temperature solvent colliding with the polymer.

In the simulation, the solvent is not explicitly simulated, rather at each step of the polymer’s dynamics,

a random Gaussian number is drawn by the computer to represent the extra force a monomer feels

from the effect of the solvent. Finally, the endpoint of the polymer experiences an external force that

we apply to force the polymer to spread out at a fixed stretching rate. This applied force is measured

and plotted in the top right of the screen. When the applied force is integrated, we compute the total

work exerted by the external force, and this accumulated work is plotted in the bottom right of the

screen.

If you slow down the pulling rate, you will see that the total work to stretch out the chain matches the

reversible work.

(a) First consider the case of an infinitesimally slow pulling rate. Compute the average force that must

be applied on the end monomer as a function of k, L, and N .

(b) Use the provided simulation, starting with N = 20 beads and a pulling rate of 0.1 (in reduced

units where β = 1, l = 1, and bead mass m = 1). Then try a pulling rate of 0.01 and a pulling rate of

0.001. Observe that for very slow pulling the total work is very close to the reversible work. Notice

also that the mean force fluctuates around the correct average value that you found in (a). But the

fluctuations in the measured force are quite large, even at slow pulling rates. Explain why the force

fluctuations do not decrease for slow pulling rates even though the work fluctuation do.
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2. A perpetual motion machine?! Your friend at the University of Chicago has come up with a brilliant

idea. When he played with the simulation, he set N = 15 and pulled with a rate of 0.1 (in the reduced

units). He observed that sometimes he gets negative work by stretching the polymer out. In other

words, he expected to have to do work to pull the polymer apart, but sometimes the polymer did work

on him. Your friend is super excited because he thinks he can build some sort of DNA/laser tweezer

machine that stretches and unstretches a strand of DNA and gets work out in the process. Use the

simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/444/gc js/cyclicworkdistribution.html

to help you evaluate his plan.

(a) During a single cycle, will the UChicago scientist ever extract work from the system (the measured

work is negative)?

(b) Will the average extracted work ever be negative? To answer, compute the average work 〈W 〉 for

pulling rates of 0.05, 0.1,, and 0.2. You will want to check “Repeat Pulling to Collect Work Statistics”

then click restart to automatically generate statistics of the pulling expeirments. Make sure you run

the program long enough for the values of 〈W 〉 to converge. What do you notice about how the

distribution of measured work values depends on the pulling rate? Will there be a pulling rate so that

your friend’s machine will reliably extract work and make him billions of dollars?

(c) Based upon the time-reversibility of dynamics (i.e., Newton’s laws look the same forward as they

do backwards), it can be shown that the probability of observing a value of work, W , over one of the

cycles is related to the probability of measuring −W by

P (W )

P (−W )
= eβW , (1)

where β = 1/kBT is the inverse temperature. (This formula is a special case of the Crooks fluctu-

ation theorem, which we will discuss further in the next problem.) At a single pulling rate, run the

simulation long enough to generate a smooth work probability distribution. Once the distribution has

converged use the raw data provided below the plot to confirm that the probability of positive and

negative values of work are related as predicted by Equation (1). (Agreement will be good but not

perfect only because of finite statistics and because histogram bin sizes analyzed in the applet are

fairly wide.) β = 1 in the reduced units of the simulations.

(d) The average work from Part (b) can be considered to be an average over the work distribution

function, P (W ).

〈W 〉 =
∑

W

WP (W )

Show that Equation (1) implies that your answer to Part (b) must be positive.

(e) We could find the average value of any observable in the same way we did in Part (c). For example,

the average value of some function of work, f(W ) is given by

〈f(W )〉 =
∑

W

f(W )P (W ).

With this formula, show that

1 =
〈

e−βW
〉

.

[Hint: Think about f(W ) = 1.] The average in this equation is over all possible values of work,

which means averaging over all of the possible non-equilibrium pulling experiments.
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(f) This average of the exponential is computed in the simulation and reported on the screen. Note

that it converges to one, but the convergence is slow. Comment on why convergence is so slow. [Hint:

Think about how probable it is to observe measurements that contribute the most to the average.]

3. Equilibrium free energies from nonequilibrium measurements. In the previous problem, you

considered a cyclic process in which the polymer endpoints returned to their original positions at the

end of each run. If the reversible work between the starting and ending configurations is not zero, the

general form of the Crooks fluctuation theorem applies:

PF(Wd) = PR(−Wd)e
βWd . (2)

Here, Wd = W − Wrev is the extra work we do on top of the reversible work. PF(Wd) refers to

the probability of measuring a value Wd when pulling the polymer. PR(−Wd) is the probability of

measuring a value of −Wd when pushing the endpoints of the polymer back to where they started.

(F stands for forward process, R for reversed.) In experiments with DNA folding it is important to

know the reversible work for unfolding a piece of DNA, but we cannot pull the DNA slowly enough to

unfold the polymer reversibly. Averaging the work performed during a laser tweezing experiment is a

bad estimate for Wrev because 〈W 〉 6= Wrev. Notice that the Crooks fluctuation theorem establishes

that the difference in statistics between forward and backward processes – the nature of time’s arrow

– is determined entirely by value of the dissipated work, Wd.

Repeat the logic of Problem 2(e) to write down an expression for Wrev in terms of the average of some

quantity you could measure in the pulling experiments. [Hint: PR(W ) is a normalized probability

distribution, so
∑

W PR(W ) = 1.]

You can check that this gives a good estimate for Wrev with using the simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/444/gc js/workdistribution.html.

With the Crooks fluctuation theorem, therefore, you have a way to extract measurements that tell us

about equilibrium systems (Wrev) from experiments that are not even close to equilibrium!
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