Chem 444 Problem Set 4 Due: Thursday, October 25

“[The Boltzmann distribution] is the summit of statistical mechanics, and the entire subject is either the
slide-down from this summit, as the principle is applied to various cases, or the climb-up to where the
fundamental law is derived.” —Richard Feynman

1. The climb up. In class we presented a reasonable but less than rigorous derivation of the Boltzmann
distribution,
P(v) o e PEW)

)

for microstates v of a system that can exchange energy with a very large bath. This result was obtained
from the fundamental relationship

P(v) x Qp(ET — E(v))

through a Taylor expansion of In {2, where ET denotes the total energy shared by system and bath,
and Qp(Ep) is the number of bath microstates with energy Ep. Here you will develop this argument
a little more carefully (and perhaps a little more convincingly—you may have wondered, for example,
why we were Taylor expanding In 25 and not 2p).

We will assume that Q2 has a large deviation form,

Op = [wp(ep)]"®

)

where Np is the number of molecules in the bath, eg = Ep/Np is the corresponding energy per
molecule, and wp(ep) is a smooth function that does not depend on the size of the bath. As in lecture
the dependence of ) on E'g will be used to define a property /3 of the bath:
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(1) Show that § is insensitive to the extent of the bath. In particular, relate 8 to wp and derivatives of
wp with respect to eg. Explain why this relationship indicates independence of the bath’s size. (Since
we saw in lecture that this /3 is an inverse temperature, it should be pleasing that it doesn’t depend on
bath size. When I say to put a test tube in a 25° C water bath, I shouldn’t have to specify if the bath
is 1 liter or 2 liters in volume. Assuming the volume of the bath is very big compared to the system, I
should be able to specify 3 alone.)

(i1) Show that
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(6293> = 3%Qp +c.
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Identify the quantity c and explain why it can be neglected in the limit Ny — oo.
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(iii) Show that

(iv) Calculate




for arbitrary (integer) n. Do not include any terms that are negligible in the limit Ny — oo.

(v) Consider the Taylor expansion

o9 1, (0%Q
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where all partial derivatives are implicitly evaluated at £ = 0.

Combining your results together with this expansion, show that the relationship
Qp(Er — E(v)) oc e PPW)
is exact in the limit Ng — oo of an infinitely large bath.

2. The slide down. Remarkably, the decomposition between system and bath (as well as our counting
tools with cumulant generating functions) work equally well in a quantum setting as a classical setting.
Consider a one-dimensional quantum harmonic oscillator, which has equally spaced discrete energy
levels: %hw, %hw, ghw .... (Warning: this w has nothing to do with what we were calling w in
Problem 1, but the notation is reasonably standard in both cases. I'm sticking with it despite the
possibility for confusion.) We assume the harmonic oscillator is in contact with a large thermal bath
at temperature 7'.

(i) We have seen that the cumulant generating function for fluctuations in a variable X takes the form
Z(B) = (e7PX), where Z(f3) can also be viewed as the normalization constant of the probability
distribution with P(X) o e #X. The Boltzmann distribution physically gives us such an expo-
nentially biased probability distribution—we expect to measure the various quantized energies with
P(E) « e PE. Out of convention, let us use ¢ to denote the moment generating function for the
energy fluctuations (the canonical partition function). Find q as a function of 7'. [Hint: a geometric
series can be summed exactly.]

(ii) By differentiating ¢ appropriately, determine the average energy (F), which should also be a
function of 7.

(iii)) A common experiment is to measure how much energy must be put into a system to increase the
temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy
increase with increasing temperature:

9 (E)

C=—+
orT

By writing (E) in terms of a derivative of In ¢, demonstrate that C' is related to a second derivative of

In g. Use this observation to compute both the typical size of the energy fluctuations <5E2> and the

heat capacity C'. Both of these quantities should be functions of the temperature.

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-
cillator but that the oscillations in the z, y, and z dimensions are independent. Then the single three-
dimensional harmonic oscillator will behave like three one-dimensional harmonic oscillators. What
will be the new values of (E), <(5E2>, and C for the three-dimensional oscillator. [Hint: Don’t com-
pute more than you have to! Think about how the cumulant generating functions change when you
incorporate multiple independent components.]
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(v) Repeat your logic from (iv) to determine C' for N three-dimensional harmonic oscillators. Ein-
stein considered this as a model for vibrations of the positions of N atoms around their equilibrium
positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be
handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how
C varied with temperature 7', Einstein argued that one could infer microscopic information about the
nature of the vibrations. Pretty cool!

Chem 444, Fall 2018 3



