
Chem 444 Problem Set 4 Due: Thursday, October 25

“[The Boltzmann distribution] is the summit of statistical mechanics, and the entire subject is either the

slide-down from this summit, as the principle is applied to various cases, or the climb-up to where the

fundamental law is derived.” —Richard Feynman

1. The climb up. In class we presented a reasonable but less than rigorous derivation of the Boltzmann

distribution,

P (ν) ∝ e−βE(ν),

for microstates ν of a system that can exchange energy with a very large bath. This result was obtained

from the fundamental relationship

P (ν) ∝ ΩB(ET − E(ν))

through a Taylor expansion of lnΩB, where ET denotes the total energy shared by system and bath,

and ΩB(EB) is the number of bath microstates with energy EB. Here you will develop this argument

a little more carefully (and perhaps a little more convincingly—you may have wondered, for example,

why we were Taylor expanding lnΩB and not ΩB).

We will assume that ΩB has a large deviation form,

ΩB = [ωB(ǫB)]
NB ,

where NB is the number of molecules in the bath, ǫB ≡ EB/NB is the corresponding energy per

molecule, and ωB(ǫB) is a smooth function that does not depend on the size of the bath. As in lecture

the dependence of ΩB on EB will be used to define a property β of the bath:

β ≡

(

∂ lnΩB

∂EB

)

NB,VB

(i) Show that β is insensitive to the extent of the bath. In particular, relate β to ωB and derivatives of

ωB with respect to ǫB. Explain why this relationship indicates independence of the bath’s size. (Since

we saw in lecture that this β is an inverse temperature, it should be pleasing that it doesn’t depend on

bath size. When I say to put a test tube in a 25◦ C water bath, I shouldn’t have to specify if the bath

is 1 liter or 2 liters in volume. Assuming the volume of the bath is very big compared to the system, I

should be able to specify β alone.)

(ii) Show that
(

∂ΩB

∂EB

)

NB,VB

= βΩB

(iii) Show that
(

∂2ΩB

∂E2
B

)

NB,VB

= β2ΩB + c.

Identify the quantity c and explain why it can be neglected in the limit NB → ∞.

(iv) Calculate
(

∂nΩB

∂En
B

)

NB,VB
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for arbitrary (integer) n. Do not include any terms that are negligible in the limit NB → ∞.

(v) Consider the Taylor expansion

ΩB(ET − E) = ΩB(ET)− E

(

∂ΩB

∂EB

)

NB,VB

+
1

2
E2

(

∂2ΩB

∂E2
B

)

NB,VB

+ . . .

=
∞
∑

n=0

1

n!
(−E)n

(

∂nΩB

∂En
B

)

NB,VB

,

where all partial derivatives are implicitly evaluated at E = 0.

Combining your results together with this expansion, show that the relationship

ΩB(ET − E(ν)) ∝ e−βE(ν)

is exact in the limit NB → ∞ of an infinitely large bath.

2. The slide down. Remarkably, the decomposition between system and bath (as well as our counting

tools with cumulant generating functions) work equally well in a quantum setting as a classical setting.

Consider a one-dimensional quantum harmonic oscillator, which has equally spaced discrete energy

levels: 1
2~ω,

3
2~ω,

5
2~ω . . .. (Warning: this ω has nothing to do with what we were calling ω in

Problem 1, but the notation is reasonably standard in both cases. I’m sticking with it despite the

possibility for confusion.) We assume the harmonic oscillator is in contact with a large thermal bath

at temperature T .

(i) We have seen that the cumulant generating function for fluctuations in a variable X takes the form

Z(β) =
〈

e−βX
〉

, where Z(β) can also be viewed as the normalization constant of the probability

distribution with P (X) ∝ e−βX . The Boltzmann distribution physically gives us such an expo-

nentially biased probability distribution—we expect to measure the various quantized energies with

P (E) ∝ e−βE . Out of convention, let us use q to denote the moment generating function for the

energy fluctuations (the canonical partition function). Find q as a function of T . [Hint: a geometric

series can be summed exactly.]

(ii) By differentiating q appropriately, determine the average energy 〈E〉, which should also be a

function of T .

(iii) A common experiment is to measure how much energy must be put into a system to increase the

temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy

increase with increasing temperature:

C =
∂ 〈E〉

∂T
.

By writing 〈E〉 in terms of a derivative of ln q, demonstrate that C is related to a second derivative of

ln q. Use this observation to compute both the typical size of the energy fluctuations
〈

δE2
〉

and the

heat capacity C. Both of these quantities should be functions of the temperature.

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-

cillator but that the oscillations in the x, y, and z dimensions are independent. Then the single three-

dimensional harmonic oscillator will behave like three one-dimensional harmonic oscillators. What

will be the new values of 〈E〉,
〈

δE2
〉

, and C for the three-dimensional oscillator. [Hint: Don’t com-

pute more than you have to! Think about how the cumulant generating functions change when you

incorporate multiple independent components.]
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(v) Repeat your logic from (iv) to determine C for N three-dimensional harmonic oscillators. Ein-

stein considered this as a model for vibrations of the positions of N atoms around their equilibrium

positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be

handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how

C varied with temperature T , Einstein argued that one could infer microscopic information about the

nature of the vibrations. Pretty cool!
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