
Chem 444 Problem Set 3 Due: Thursday, October 18

1. A simple model of a polymer. You’re no doubt aware that the shape a protein folds up into is

influenced by energetic interactions between amino acids. You may not have given as much thought

to the influence of entropy on a protein’s shape. To focus on that concept, we consider the simplest

model for conformational fluctuations of a long chain molecule, formed from n polymer segments

connected end to end. Each segment i = 1, 2, . . . , n (perhaps comprising many chemical units)

has a fixed length ℓ and an orientation b̂i that is parallel to one of d Cartesian axes (x̂, ŷ, or ẑ in 3

dimensions). In other words, the molecular configuration traces a random walk on a d−dimensional

cubic lattice:

Imagine that the orientations of different segments are statistically independent, and that there is no

preferred orientation, 〈b̂i〉 = 0 and 〈b̂i · b̂j〉 = δij , where δij = 1 if i = j and vanishes otherwise.

(i) Show that the entropy of such an ideal chain molecule has the form S = kBn ln a. Determine the

parameter a as a function of dimensionality d.

(ii) What is the expected value of R, that is to say what is 〈R〉, where R = ℓ
∑n

i=1
b̂i is the end-to-end

vector?

(iii) Is this the most likely value of R? In other words, there is some probability distribution P (R) de-

scribing the likelihood of every possible vector R. Does 〈R〉 coincide with the peak of that probability

distribution?

(iv) Imagine n is very large and I use a computer program to take random steps on the lattice, thereby

generating a single sample of the polymer. (I have provided a Mathematica notebook, ps3Mathematica.nb,

that does such a simulation!) Do you think the sample will have sections that looked bunched up as

though the polymer is partially “folded” or do you expect the polymer to be completely spread out

and “unfolded”? Notice that there is nothing like a Coulomb attraction pulling any of the monomers

closer together. The expected behavior of this model is purely entropic (due to counting the number

of possibilities).

(v) Do you think my randomly generated polymer sample will start and stop at the exact same grid

site? Rationalize your answer in light of your responses to (ii) and (iii).

(vi) Given your response to part (v), suggest a reason that the root mean squared end-to-end distance
√

〈R2〉 would be a better measure of the size of the polymer than the average displacement vector

〈R〉.
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(vii) Calculate the mean squared end-to-end distance of the chain molecule,
〈

R2
〉

. Your result should

indicate that the typical distance between ends of the molecule grows with chain length as
√

〈R2〉 ∝
nν . Identify the exponent ν. How does your result depend on dimensionality d? [Hint: You should

not need to use generating functions or other fancy tricks.]

(viii) For a (three-dimensional) polymer in “good” solvent, experiments yield ν ≈ 3/5. (A “good”

solvent is one that prevents the molecule from collapsing onto itself, i.e., effective interactions among

different segments are repulsive.) Compare this measured value with the one you calculated, and

comment on the discrepancy.

2. A slightly less simple model of a polymer. There are many ways in which you might argue that the

polymer model from Problem 1 is lacking. For one thing, you might complain that real polymers don’t

live on a grid; we should have let each step move in a random direction, not just along a Cartesian

axis. You might also complain that polymers can stretch. Perhaps we should have allowed the size of

each link between monomers to vary. In this problem we will explore a model of a Gaussian polymer

(in three dimensions) which addresses both of these complaints. It’s a model we’ll refer back to in

future lectures as we discuss heat, work, and free energy.

We denote the position of the n+ 1 monomers (still n segments as in Problem 1) by R0,R1, . . .Rn

and define our coordinate system by putting the origin at the location of the initial monomer, so

R0 = 0. The next monomer’s position is randomly selected from the Gaussian distribution

P (R1) =

(

3

2πℓ2

)
3
2

exp

(

−
3 (R1)

2

2ℓ2

)

.

Observe that the bond between monomers 0 and 1 can be of variable length and can point in any

direction in three-dimensional space, in contrast to Problem 1. Monomer 2’s position is similarly

selected from a Gaussian, but now a Gaussian centered at the location of the second monomer:

P (R2) =

(

3

2πℓ2

)
3
2

exp

(

−
3 (R2 −R1)

2

2ℓ2

)

.

The pattern continues, so the position of monomer i+ 1 is randomly selected from

P (Ri+1) =

(

3

2πℓ2

)
3
2

exp

(

−
3 (Ri+1 −Ri)

2

2ℓ2

)

.

The goal of this problem is to see that this model has the exact same root mean squared end-to-end

distance as the simpler polymer in Problem 1. (The secondary goal is to become familiar with this

model since I’ll refer to it in class at a later date.)

(i) Using the Gaussian integrals from Problem Set 1 (you don’t need to rederive these!), compute the

root mean squared distance of the connection between monomer 0 and 1 (it will be the same between

any monomers i and i+ 1). You will probably want to write integrals in Cartesian coordinates, i.e.,

〈R2
1〉 =

(

3

2πℓ2

)
3
2
∫

dR1 (R1)
2 e−

3(R1)
2

2ℓ2

=

(

3

2πℓ2

)
3
2
∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫

∞

−∞

dz1 (x
2
1 + y21 + z21) exp

(

−
3(x21 + y21 + z21)

2ℓ2

)

,

with R1 = (x1, y1, z1). If you want, you can do integrals like this in Mathematica as well.
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(ii) We can view the polymer as being constructed by a series of steps. You start at monomer 0,

then take a random step to get to monomer 1, etc. We saw in our study of random walkers that

when the individual steps were independent and drawn from the identical distribution (in this case the

Gaussian), we could write the cumulant generating function for a variable XT =
∑T

i=1
xi in the form

lnZT (β) = ln
〈

e−βXT

〉

= T ln
〈

e−βX1

〉

where
〈

e−βX1
〉

was an expectation value taken after a single step (which was comparatively easy to

compute). The consequence was that the cumulants after T steps could be expressed in terms of the

cumulants after a single step. Use this idea to determine the root mean squared end-to-end distance of

the Gaussian polymer,
√

〈R2
n〉.

(iii) You should similarly be able to compute the first cumulant 〈Rn〉 for the n step Gaussian polymer.

It turns out that all the other cumulants are exactly zero so that the distribution for the position of the

nth monomer (remember monomer 0 is defined to be at the origin, so this is the same as the end-to-end

vector) is a Gaussian. Write down that Gaussian probability density function P (Rn).

(iv) [Completely Optional!] One way to convince yourself that the distribution in (iii) must be a

Gaussian is to compute the cumulant generating function, taking into account that each polymer step

occurs in three dimensions. In place of the scalar β, let us use a vector k = (kx, ky, kz) which has

one component for each dimension:

lnZn(k) = ln
〈

e−k·Rn

〉

= n ln
〈

e−k·R1

〉

.

Now lnZn(k) is a function of three variables (kx, ky, and kz), and we could take derivatives with

respect to any of these. Argue that the generating function gives access to the statistical properties of

the x, y, and z components of Rn:

∂2 lnZn(k)

∂k2x

∣

∣

∣

∣

k=0

=
〈

x2n
〉

,
∂2 lnZn(k)

∂k2y

∣

∣

∣

∣

k=0

=
〈

y2n
〉

,
∂2 lnZn(k)

∂k2z

∣

∣

∣

∣

k=0

=
〈

z2n
〉

.

In Problem Set 1, Problem 3, Part iv, you computed the moment generating function for a single

variable Gaussian. The d-dimensional analog is

〈

e−k·R1

〉

= exp

(

k · µ+
σ2k2

2d

)

,

where µ = 〈R1〉 and σ2 =
〈

R2
1

〉

. Confirm this result then use it to find lnZn(k).

Confirm that this gives the same root mean squared end-to-end distance of the Gaussian polymer,
√

〈R2
n〉 you calculated in (ii). Use your form for the cumulant generating function and the fact that

〈

R2
n

〉

=
〈

x2n
〉

+
〈

y2n
〉

+
〈

z2n
〉

.

Finally, explain why the form of the cumulant generating function lnZn(k) ensures that all cumulants

beyond the second cumulant will be zero [Hint: Problem Set 1, Problem 3, Part v].
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