
Chem 444 Problem Set 1 Due: Thursday, October 4

1. Coin Flips. Imagine flipping an unbiased coin N times. Let NH be the number of heads results, and

f = NH/N be the fraction of such results.

(i) What is the probability of observing a particular sequence of heads (H) and tails (T) results, e.g.,

H T T T T H H T T H H T H... ?

(ii) How many possible flip sequences yield exactly NH heads results? Your answer should involve

the factorial function, M ! ≡ M × (M − 1)× (M − 2)× . . .× 3× 2× 1.

(iii) Write an exact equation for the probability P (NH) of observing NH heads results when the coin

is flipped N times.

(iv) Stirling’s approximation,

lnM ! ≈ M lnM −M for largeM,

allows you to simplify your result in part (iii) assuming N is very large. First, we consider a hand-

wavy way to “derive” Stirling’s approximation. We know that the integral of a function g(x) can be

approximated by a Riemann sum:

∫ b

a
g(x) ≈

(b−a)/∆x
∑

i=0

g(a+ i∆x)∆x

when ∆x is sufficiently small. If b− a ≫ 1, ∆x = 1 can be small enough for a good approximation

of the integral. Follow this line of argument to show Stirling’s approximation. (Hint: you will want to

consider g(x) = lnx and an appropriate choice of a and b).

(v) Armed with Stirling’s approximation, show that P (NH) can be written in the large deviation form

P (NH) ≈ e−NI(f)

when N is sufficiently large to justify Stirling’s approximation. Identify and plot I(f) as a function

of f .

(vi) Reflect on the fact that I does not depend on N . In other words the extensive (large) part of the

problem has dropped out and only impacts the probability through the factor that multiplies I . This

is a major simplification! You might have thought that the term in the exponent should have higher

powers of N , but it does not.

2. A Macroscopic Number of Spins. Now imagine the physical scenario of making a single mea-

surement (as opposed to repeated coin flips) of N ≫ 1 noninteracting spin-1/2 particles. In that

measurement, the observed z-component of each spin is up or down with equal probability.

(i) What is the probability of observing a number Nup of up spins in a given observation? Write your

answer in terms of the fraction f = Nup/N .

(ii) Although Nup = N/2 is the most likely observation, a typical measurement will not yield exactly

half the spins pointing up. For Avogadro’s number of spins, N ≈ 1024, estimate the relative probabil-

ity of a small deviation δ = 0.0000001 from the ideal fraction, i.e., calculate P (f = 0.5+ δ)/P (f =
0.5). Your numerical answer need not be highly accurate; just determine the order of magnitude. (For

this purpose, Taylor expansion of lnP about δ = 0 is both permitted and a good idea).
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(iii) In the large N limit, the distribution P (f) becomes well-approximated by a Gaussian distribution.

Derive this Gaussian using your Taylor expansion in (ii). Use that result to determine the Gaussian

distribution P (Nup).

(iv) What does your result imply about the reproducibility of measurements on macroscopic systems?

Imagine repeating the measurement many times and getting the fraction f of up spins from each

repeated experiment. Would the variance of those values of f be large or small? Specifically, how

would the variance depend on N? What about the variance of the values of Nup collected from each

experiment?

3. Fun with Gaussians. One of the most important continuous distributions is the Gaussian distribution

P (x) =
1√
2πσ2

exp

(

−(x− µ)2

2σ2

)

.

I assume you probably already have some familiarity with this distribution. These problems are either

a crash course or a refresher. I do not consider it important that you “discover” the standard tricks on

your own, but I do think you should be aware of them. Please talk to me or to other students if this is

foreign!

(i) Normalization: Show that
∫

dx P (x) = 1. [Standard trick: Convert to a two dimensional integral

over a joint distribution of identical, independent Gaussians for the x and y coordinates. Remind

yourself what a Jacobian is.]

(ii) Mean: Show that 〈x〉 =
∫

∞

−∞
dx xP (x) = µ. [Standard trick: Substitute u = x − µ and notice

that an integral cancels by symmetry.]

(iii) Variance: Show that
〈

(δx)2
〉

=
∫

∞

−∞
dx (x − µ)2P (x) = σ2. [Standard trick: From (i) and

symmetry find the integral of e−αx2

from 0 to ∞. Differentiate with respect to α.]

(iv) Generating function: Show that
〈

eβx
〉

=
∫

∞

−∞
dx eβxP (x) = exp

(

βµ+ σ2β2

2

)

. [Standard

trick: Complete the square.]

(v) Cumulant generating function: The cumulant generating function, ln
〈

eβx
〉

follows simply from

(iv). Comment on how this can be used to verify that the mean and variance are µ and σ2, respectively.

What does the Gaussian distribution’s cumulant generating function tell you about the value of the

higher order cumulants.
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