
Chem 348 Problem Set 4 Solutions Due: Tuesday, June 1 (Extension to Friday, June 4 if desired)

1. A chemical decomposition.

Consider the decomposition of ammonium hydroxide into ammonia and water:

NH4OH → NH3 + H2O.

We call the decomposition of the ammonium hydroxide the “forward reaction”. For this problem, you

will assume that the “backward reaction,” the generation of ammonium hydroxide from ammonia and

water, is negligible. We will use p(t) to denote the probability that a single ammonium hydroxide

molecule has not yet decomposed after a time t, and we will use [NH4OH], [NH3], and [H2O] to

denote the concentrations of the three chemical species.

(i) Imagine recording the fate of a single ammonium hydroxide molecule every ∆t units of time. If

at the beginning of the ∆t time interval the molecule is intact, the probability of decomposing by the

end of the time interval is given by α. What is p(n∆t), the probability that the initial ammonium

hydroxide molecule has not decomposed at time t = n∆t after an integer number n of such ∆t
intervals? Express your answer in terms of n and α.

[Hint: You can (and should) assume that the behavior during one interval ∆t does not impact the

probability of decomposition in the other intervals of time.]

To still persist after n intervals, the molecule must have survived all of the previous intervals.

The probability of survival for each interval is 1−α, so the chance of n repeated (independent)

survivals is

p(n∆t) = (1− α)n.

(ii) As the time interval ∆t is made smaller, α will also decrease. We define

kf = lim
∆t→0

α

∆t
,

which is the probability per unit time of a molecular decomposition in an infinitesimal time interval.

By taking the ∆t → 0 limit of your answer to (i), express p(t) in terms of kf and t.

[Hint: ex = limn→∞

(

1 + x
n

)n
.]

In the small ∆t limit we have

P (t) = lim
∆t→0

(1− kf∆t)t/∆t

=

(

lim
∆t→0

(1− kf∆t)1/∆t

)t

=
(

e−kf
)t

= e−kf t.
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(iii) Use your answer to (ii) to derive an expression for dp(t)/dt in terms of kf and p(t). In the event

that you could not figure out (ii), I will award partial credit if you are able to write down the correct

expression by intuition or by working backwards from (iv).

Differentiating both sides of your answer to (ii) yields:

dp(t)

dt
= −kfe

−kf t = −kfp(t).

This looks like the normal first order differential equation we would write down but for the

probability of a single ammonium hydroxide molecule staying intact rather than for the con-

centration of ammonium hydroxide (as we’ll see in the next part).

(iv) Assume you start with N ammonium hydroxide molecules in a volume V . Relate p(t) to

[NH4OH](t) and use (iii) to derive the rate of decay of the NH4OH concentration:

d[NH4OH]

dt
= . . .

The key idea here is that each of the N molecules behaves completely independently of the

others. Hence [NH4OH](t) = Np(t)/V . Taking a time derivative of both sides leads to the

rate law

d[NH4OH]

dt
=

N

V

dp(t)

dt

= −N

V
kfp(t)

= −kf [NH4OH].

This is the standard first-order rate law you are accustomed to writing down, but I’ve asked

you to derive it step by step from simple microscopic assumptions. If you jumped to the result

without clear explanations I may have not granted full credit.

(v) Our procedure in this problem appears to be quite generic. We’ve said nothing about the chemical

mechanism of decomposition, only that the probability of decomposing in time ∆t is α. Why then

could some molecules actually decompose with a decay probability different than the one you found

in (ii)? (I’m looking for something more than the fact that we have neglected the backward reaction.)

We have assumed that all of the ammonium hydroxide molecules are independent. In other

words, we have assumed that α is a property that only depends on the single ammonium

hydroxide that is going to decompose, not on how many such molecules there are. If, however,

the decomposition mechanism involved collisions with other molecules, one should expect the

decay probability α to be concentration-dependent. Due to these interactions, concentrations

could decay with a different rate law.

2. Dynamic equilibrium. Now we will no longer neglect the backward reaction, but will rather consider

the dynamic equilibrium

NH4OH
kf−⇀↽−
kr

NH3 + H2O.
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I assume you know from past studies that a standard model is to assume the backward reaction is “first

order” in each of the products, meaning the concentration of ammonium hydroxide increases due to

the backward reaction with a rate

d[NH4OH]

dt
= kr[H2O][NH3].

Such a model comes from the assumption that reaction is elementary: that the backward reaction

requires H2O to collide with NH3, and that the probability of such a collision would increase linearly

in the concentrations of each species. When the reaction occurs in aqueous solution, it is routine to

define the effective first order rate constant k′r = kr[H2O] since [H2O], the concentration of water in

aqueous solution, is effectively constant. Then, we might view the reaction as

NH4OH
kf−⇀↽−
k′r

NH3.

(i) You’re helping a freshman friend with his general chemistry homework and he keeps referring to

kf , kr, and k′r as “rates.” What is wrong with calling all of these parameters rates as opposed to rate

constants?

You could have said several things, but the key thing I wanted you to notice is that they don’t

even have the same units. While kf and k′r do have units of a rate (inverse time), kr includes

a factor with units of inverse concentration. It is the product of the k’s with the appropriate

concentrations that are actually the rates.

(ii) Your freshman friend tells you about the concept of an equilibrium constant. He says that people

like to look at

Keq =
[NH3]eq

[NH4OH]eq
,

where [NH3]eq and [NH4OH]eq are the long-time equilibrium concentrations. Use the principle of

detailed balance at equilibrium (the equality of the rate of NH4OH production and degradation) to

show that Keq can be written in terms of kf and k′r.

Detailed balance requires kf [NH4OH]eq = k′r[NH3]eq, so

Keq =
[NH3]eq

[NH4OH]eq
=

kf
k′r
.

(iii) Thinking back to Problem 1, you realize that instead of viewing

Keq =
[NH3]eq

[NH4OH]eq

in terms of concentrations, you could consider

Keq =
pNH3

pNH4OH
,
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where pNH3
and pNH4OH are the equilibrium probabilities that a single molecule switching between

O2 and H2O2 states will occupy each option. This now looks like a partitioning between two possi-

bilities, so you realize Keq must be a ratio of an O2 partition function and an H2O2 partition function.

You guess that

Keq =
pNH3

pNH4OH
=

QNH3

QNH4OH
=

e−βANH3

e−βANH4OH

,

implying

∆A = ANH3
−ANH4OH = −kBT ln

pNH3

pNH4OH
= −kBT lnKeq.

The Q’s are the canonical partition functions and ∆A is the difference in Helmholtz free energy

between O2 and H2O2. You’re feeling really pumped about these cool connections you’re making

thanks to your new found love of statistical mechanics, but then your freshman friend bursts your

bubble. He points you to an equation in his book that reads:

∆G = −kBT lnKeq.

Why does the book have the Gibbs free energy difference ∆G on the left-hand side instead of the

Helmholtz free energy difference ∆A?

Which free energy appears depends on the reaction conditions. If the reaction takes place in a

fixed volume at constant temperature then the Helmholtz free energy would be appropriate. If

however, like most benchtop chemistry, the reaction is carried out with a fixed temperature and

fixed pressure, then you should be using a ratio of partition functions that allow for fluctuating

volumes, and this change would yield the Gibbs free energy in place of the Helmholtz free

energy.

(iv) Still working with the effective first-order backward reaction

NH4OH
kf−⇀↽−
k′r

NH3

write down the coupled differential equations for the changes in ammonium hydroxide and ammonia

concentrations:

d[NH4OH]

dt
= . . .

d[NH3]

dt
= . . .

d[NH4OH]

dt
= −kf [NH4OH] + k′f [NH3]

d[NH3]

dt
= −k′r[NH3] + kf [NH4OH]

(v) The solution to the differential equations should take the form

[NH4OH](t)− [NH4OH]eq = ([NH4OH](0)− [NH4OH]eq) e
−t/τ ,

where [NH4OH](0) is the initial ammonium hydroxide concentration. In terms of kf and k′r, what is

the time constant τ?
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We solved an identical problem in class. If you just remembered that τ = (kf +k′r)
−1 that was

fine. I assumed most people would not remember this and would have to rederive the result.

You could look in the notes to see how we did this in class. An alternative method that you

might have figured out based on the homework, is to inspect the eigenvalues by solving

0 =

∣

∣

∣

∣

−kf − λ k′r
kf −k′r − λ

∣

∣

∣

∣

= λ2 + (kf + k′r)λ+ kfk
′

r − kfk
′

r.

This eigenvalue equation is solved when λ = 0 (an eigenvalue associated with equilibrium)

and when λ = −(kf + k′r). This second eigenvalue implies an exponential decay of the form

e−(kf+k′r)t,

which is enough to answer the question.

3. Do you smell that? I’m worried people are going to fall asleep in lecture, so I decide to open up a

bottle of perfume at the front of the room the moment I see someone start to nod off. Let’s try to figure

out how long it will take before they smell it.

(i) Let us first assume that the random walk models we’ve worked so laboriously to understand can

help us explain the situation! In other words, we assume that each perfume molecules can be modeled

as moving in some direction until it collides with an air molecule, at which point the perfume randomly

gets kicked in a new directly. We have seen that the spread of the random walkers (in this case

perfume molecules) goes like
〈

δR2
〉

T
= 2dDT , where d is the dimensionality and D is the perfume’s

diffusion constant. Since we live in a three dimensional world, R2 = X2 + Y 2 + Z2 and d = 3. If

perfume has a diffusion constant in air of 10−6 m2s−1, estimate the time for the perfume to reach the

dozing student 5 meters away.

Your first hunch may be that the typical distance traveled by a particle is 〈R〉, but if the particle

is moving due to pure diffusion (not diffusion plus drift), notice that 〈R〉 = 0 by symmetry.

Even when the mean isn’t moving, it’s clearly not the case that most particles aren’t going to

move. Thus we will measure the “typical distance” that the particles move by the root mean

squared: Rrms ≡
√

〈R2〉T =
√

〈

δR2
〉

T
(assuming that we have pure diffusion with 〈R〉 = 0

on this last equality). Solving for Rrms =
√
6DT = 5 meters gives T ≈ 4× 106 seconds!

(ii) Is your answer to (i) reasonable? What else could be going on?

Our answer to (i) is about an eighth of a year. There is no way that is consistent with our ex-

perience (but think of how much more pleasant that could make walking through a department

store). It seems our assumption that the motion is due to pure diffusion is probably not valid.

Rather, there are “convective currents” due to slight temperature variations around a room.

(iii) While we’re crunching numbers, let’s think about the self-diffusion of water, that is to say one

molecule diffuses in a background of other water molecules (as opposed to the perfume in a back-

ground of air). The self-diffusion constant for a water molecule in liquid water is about 10−5cm2/sec.

Assuming the liquid is at equilibrium and not stirred, what are the typical times for a water molecule

to move one molecular diameter (about 0.3 nm)? What about across the surface of a protein (about 1

nm)? Finally, a macroscopic distance (about 1 cm)?
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This problem just required you to plug some numbers in to get a sense of timescales that

are important to chemistry. To move one molecular diameter requires about (0.3 nm)2/(6 ×
10−5 cm2 s−1) = 15 ps. Diffusing across the surface of a protein requires about

(1 nm)2/(6 × 10−5 cm2 s−1) ≈ 167 ps. Finally, to diffuse 1 cm requires about (1 cm)2/(6×
10−5 cm2 s−1) ≈ 4.6 hours.
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