
Chem 348 Problem Set 3 Due: Friday, May 28

1. A simple model of a polymer. You’re no doubt aware that the shape a protein folds up into is

influenced by energetic interactions between amino acids. You may not have given as much thought

to the influence of entropy on a protein’s shape. To focus on that concept, we consider the simplest

model for conformational fluctuations of a long chain molecule, formed from n polymer segments

connected end to end. Each segment i = 1, 2, . . . , n (perhaps comprising many chemical units)

has a fixed length ℓ and an orientation b̂i that is parallel to one of d Cartesian axes (x̂, ŷ, or ẑ in 3

dimensions). In other words, the molecular configuration traces a random walk on a d−dimensional

cubic lattice:

Imagine that the orientations of different segments are statistically independent, and that there is no

preferred orientation, 〈b̂i〉 = 0 and 〈b̂i · b̂j〉 = δij , where δij = 1 if i = j and vanishes otherwise.

(i) Show that the entropy of such an ideal chain molecule has the form S = kBn ln a. Determine the

parameter a as a function of dimensionality d.

(ii) What is 〈~R〉, where ~R = ℓ
∑n

i=1
b̂i is the end-to-end vector corresponding to a single polymer

configuration?

(iii) Given your response to part (ii), suggest a reason that the root mean squared end-to-end distance
√

〈R2〉, where R2 = ~R · ~R, would be a better measure of the size of the polymer than the average

displacement vector 〈~R〉.
(iv) Calculate the mean squared end-to-end distance of the chain molecule,

〈

R2
〉

. Your result should

indicate that the typical distance between ends of the molecule grows with chain length as
√

〈R2〉 ∝√
n. How does your result depend on dimensionality d?

2. A Gaussian polymer. Real polymers don’t live on lattices, so you would be excused for thinking the

model in the first problem would have some serious limitations. Perhaps a more realistic model for

a classical polymer should consist of n + 1 monomers connected together in a chain by n harmonic

springs. We use ~Ri to denote the position (in three-dimensional space) of the ith monomer. The

energy of the polymer has kinetic and potential energy contributions which depend on the positions

and velocities of every monomer:

E(~R0, . . . , ~Rn, ~̇R0, . . . , ~̇Rn) =
k

2

n
∑

i=1

(~Ri − ~Ri−1)
2 +

m

2

n
∑

i=0

~̇R2

i ,
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where m is the mass of a monomer, ~̇Ri is the velocity of monomer i, and the strength of the spring

connecting polymers is k with units of energy per length squared. The polymer is immersed in a

solution which has temperature T , so the energy of the polymer can fluctuate.

(i) The potential energy in a single bond is k
2
(~Ri − ~Ri−1)

2. Compute the average potential energy

stored in the single bond as a function of kB, T , and n. Your final answer should not depend on

k or on m. (The result is closely connected with the so-called equipartition theorem.) Should the

velocities matter? Why or why not? Does your answer depend on the fact that the polymer is in

three-dimensional space?

(ii) Let us define ~R0→n to be the vector from monomer 0 to monomer n. Owing to the harmonic form

of the potential, the probability distribution ρ(~R0→n) will be a three-dimensional Gaussian:

ρ(~R0→n) =

(

1

2π〈δR2
0→n〉

)3/2

exp






−

(

~R0→n − 〈~R0→n〉
)2

2〈δR2
0→n〉






,

in terms of the mean 〈~R0→n〉 and the variance 〈δ ~R2
0→n〉. As in Problem 1’s polymer model, the second

moment grows linearly with the number of monomers: 〈(~R0→n)
2〉 = n〈(~R0→1)

2〉. (In Problem 1,

the length of a single bond was always ℓ, but here it fluctuates.) Determine the normalized Gaussian

distribution ρ(~R0→n) in terms of β, k, and n.

Depending on how big of a challenge you want, you could really prove this Gaussian

form. To do so, you’d have to average over the position of all monomers other than the

two endpoints. Those integrals could be performed one-by-one in a straightforward and te-

dious manner. Alternatively you could do the integrals inductively by first considering a

two-bead polymer and thinking about what happens when you add one more bead. An-

other cute method I like involves doing a “decimation and renormalization” calculation. If

you’re feeling more ambitious/bored this week, you can learn more about that strategy at

http://gingrich.chem.northwestern.edu/teaching/348/2021/hws/ExtraChallenge.pdf.

(iii) How much less likely is it to find the stretched out polymer than the compact one? To answer

this, let’s say the compact polymer has an end-to-end distance of zero and the stretched polymer is

extended a distance L along the x-axis (meaning ~R0→n = Lx̂). Express your answer in terms of L, β,
and n.

(iv) The polymer prefers to be folded up because there are fewer elongated configurations. Suppose

the polymer starts out with both monomers 0 and n at the origin. If both monomers were attached to

glass beads, laser tweezers could be used to hold one bead fixed at the origin while the other bead is

moved a distance L away. What is the reversible work required to stretch the polymer?

3. Reversible work simulations.

I have written a simulation of the polymer in Problem 1 being pulled apart at a finite rate (so not

necessarily reversibly). You can run the simulation on this website:

http://gingrich.chem.northwestern.edu/teaching/polymer/gaussianchain.html

Each time you run the simulation you get a trajectory of the polymer chain of harmonically bound

nearest neighbors beads, with velocities of each bead assigned at the start of each trajectory from a

Maxwell-Boltzmann distribution. Each bead of the polymer experiences forces from the neighboring
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beads, trying to pull the neighbors closer together, but it also feels random “kicks” from the envi-

ronment. These kicks are meant to mimic the forces from molecules in a fixed-temperature solvent

colliding with the polymer. In the simulation, the solvent is not explicitly simulated, rather at each

step of the polymer’s dynamics, a random Gaussian number is drawn by the computer to represent

the extra force a monomer feels from the effect of the solvent. Finally, the endpoint of the polymer

experiences an external force that we apply to force the polymer to spread out at a fixed stretching

rate. This applied force is measured and plotted in the top right of the screen. When the applied force

is integrated, we compute the total work exerted by the external force, and this accumulated work is

plotted in the bottom right of the screen.

If you slow down the pulling rate, you will see that the total work to stretch out the chain matches the

reversible work.

(i) First consider the case of an infinitesimally slow pulling rate. Compute the average force (averaged

over fluctuations, not over the length of the polymer) that must be applied on the end monomer as a

function of k, L, and n. This should follow from your answer to Problem 2, Part (iv).

(ii) Use the provided simulation, starting with n = 20 beads and a pulling rate of 0.1 (in reduced units

where β = 1, l = 1, and bead mass m = 1). Then try a pulling rate of 0.01 and a pulling rate of 0.001.

Observe that for very slow pulling the total work is very close to the reversible work. Notice also that

the mean force fluctuates around the correct average value that you found in (i). But the fluctuations

in the measured force are quite large, even at slow pulling rates. Explain why the force fluctuations

do not decrease for slow pulling rates even though the work fluctuations do.

4. A perpetual motion machine?! Your friend at the University of Chicago has come up with a brilliant

idea. When he played with the simulation, he set n = 15 and pulled with a rate of 0.1 (in the reduced

units). He observed that sometimes he gets negative work by stretching the polymer out. In other

words, he expected to have to do work to pull the polymer apart, but sometimes the polymer did work

on him. Your friend is super excited because he thinks he can build some sort of DNA/laser tweezer

machine that stretches and unstretches a strand of DNA and gets work out in the process. Use the

simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/polymer/cyclicworkdistribution.html

to help you evaluate his plan.

(i) During a single cycle, will the UChicago scientist ever extract work from the system (the measured

work is negative)?

(ii) Will the average extracted work ever be negative? To answer, compute the average work 〈W 〉 for

pulling rates of 0.05, 0.1, and 0.2. You will want to check “Repeat Pulling to Collect Work Statistics”

then click restart to automatically generate statistics of the pulling experiments. Make sure you run

the program long enough for the values of 〈W 〉 to converge. What do you notice about how the

distribution of measured work values depends on the pulling rate? Will there be a pulling rate so that

your friend’s machine will reliably extract work and make him billions of dollars?

(iii) Based upon the time-reversibility of dynamics (i.e., Newton’s laws look the same forward as they

do backwards), it can be shown that the probability of observing a value of work, W , over one of the

cycles is related to the probability of measuring −W by

ρ(W )

ρ(−W )
= eβW , (1)

where β = 1/kBT is the inverse temperature. (This formula is a special case of the Crooks fluctu-

ation theorem, which we will discuss further in the next problem.) At a single pulling rate, run the
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simulation long enough to generate a smooth work probability distribution. Once the distribution has

converged use the raw data provided below the plot to confirm that the probability of positive and

negative values of work are related as predicted by Equation (1). (Agreement will be good but not

perfect only because of finite statistics and because histogram bin sizes analyzed in the applet are

fairly wide.) β = 1 in the reduced units of the simulations.

(iv) The average work from Part (ii) can be considered to be an average over the work distribution

function, ρ(W ), as

〈W 〉 =
∫

∞

−∞

dW Wρ(W ).

Show that Equation (1) implies that your answer to Part (ii) must be positive.

(v) We could find the average value of any observable in the same way we did in Part (iii). For

example, the average value of some function of work, f(W ) is given by

〈f(W )〉 =
∫

∞

−∞

dW f(W )ρ(W ).

With this formula, show that

1 =
〈

e−βW
〉

.

The average in this equation is over all possible values of work, which means averaging over all of

the possible non-equilibrium pulling experiments.

(vi) This average of the exponential is computed in the simulation and reported on the screen. Note

that it converges to one, but the convergence is slow. Comment on why convergence is so slow. [Hint:

Think about how probable it is to observe measurements that contribute the most to the average.]

5. (OPTIONAL) Equilibrium free energies from nonequilibrium measurements. In the previous prob-

lem, you considered a cyclic process in which the polymer endpoints returned to their original posi-

tions at the end of each run. If the reversible work between the starting and ending configurations is

not zero, the general form of the Crooks fluctuation theorem applies:

ρF(Wd) = ρR(−Wd)e
βWd . (2)

Here, Wd = W −Wrev is the extra work we do on top of the reversible work. ρF(Wd) refers to the

probability density of measuring a value Wd when pulling the polymer. ρR(−Wd) is the probability

density of measuring a value of −Wd when pushing the endpoints of the polymer back to where they

started. (F stands for forward process, R for reversed.) In experiments with DNA folding it is impor-

tant to know the reversible work for unfolding a piece of DNA, but we cannot pull the DNA slowly

enough to unfold the polymer reversibly. Averaging the work performed during a laser tweezing ex-

periment is a bad estimate for Wrev because 〈W 〉 6= Wrev. Notice that the Crooks fluctuation theorem

establishes that the difference in statistics between forward and backward processes—the nature of

time’s arrow—is determined entirely by value of the dissipated work, Wd.

Repeat the logic of Problem 4(v) to write down an expression for Wrev in terms of the average of

some quantity you could measure in the pulling experiments.

You can check that this gives a good estimate for Wrev with using the simulation posted at:

http://gingrich.chem.northwestern.edu/teaching/polymer/workdistribution.html.

With the Crooks fluctuation theorem, therefore, you have a way to extract measurements that tell us

about equilibrium systems (Wrev) from experiments that are not even close to equilibrium!
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