
Chem 348 Problem Set 1 Due: Friday, May 15

1. A Warm Up to Establish Notation. In this course we will be using mathematical tools from proba-

bility and statistics to uncover physical principles. To make sure we are all on the same page (and to

establish a little notation), let’s start by reviewing random variables and expectation values.

Let X be a discrete random variable that takes the value 1, 2, 3, 4, 5, or 6 based on the roll of a

fair die. By fair I mean that each possibility is equally likely, so the probability that X equals any

particular value is 1/6. The expectation value or mean of X computes an average over the possible

values, weighted by their probabilities:

〈X〉 =
∑

x

xP (X = x) =
∑

x

x

6
=

7

2
.

Note that I have used a shorthand summation notation where my subscript x indicates that x is being

summed over all of its possible values without explicitly listing what those values are.

Even though X can never take the value 3.5, in a certain sense we “expect” 3.5 to be the outcome. We

can also measure deviations from that expectation. Throughout the course we will use a lowercase δ
to denote these deviations, δx ≡ x− 〈x〉.

You may wonder about the difference between 〈X〉 above and the 〈x〉 I used here? There is no

real difference, just different notational choices. In a math class when talking about random

variables you would quite possibly see the former, but in this class we will typically be less

formal. Rather than talking of “the expectation value of the random variable X”, I’m more

likely to talk about “the average value of x”, and I think we all know what that means.

(i) What is the expected deviation from the mean, 〈δx〉?
(ii) What is the expected squared value of this deviation, also known as the variance, 〈δx2〉?

2. Fun with Gaussians. Random variables can also be continuous, for example, x might be allowed to

take all possible real values with some probability density ρ(x). Technically you cannot define the

probability of a single value of x (it has “measure zero”), but you can instead define the probability

that x will fall in a small interval by integrating ρ(x):

P (x ∈ [a, b]) =

∫ b

a
dx ρ(x).

One of the most important continuous distributions is the Gaussian distribution

ρ(x) =
1√
2πσ2

exp

(

−(x− µ)2

2σ2

)

.

You likely already have some familiarity with this distribution, so this problem is either a crash course

or a quick refresher. I do not consider it important that you “discover” the standard tricks on your own,

but I do think you should be aware of them. Please talk to me or to other students if this is foreign!

(i) Normalization: Show that the probability density is normalized, meaning
∫

dx ρ(x) = 1. [Stan-

dard trick: Convert to a two dimensional integral over a joint distribution of identical, independent

Gaussians for the x and y coordinates. You may find you need to remind yourself what a Jacobian is.]
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(ii) Mean: Show that 〈x〉 = µ. [Standard trick: Substitute u = x − µ and notice that an integral

cancels by symmetry.]

(iii) Variance: Show that 〈δx2〉 = σ2. [Standard trick: From (a) and symmetry find the integral of

e−αx2

from 0 to ∞. Differentiate with respect to α.]

3. Coin Flips. Now we will solve perhaps the most common problem in an introductory statistical

mechanics course. On its surface this is a problem about the probability of outcomes from flipping

fair coins, but the broader goal is to see how a single macrostate can become exceedingly probable

even when all the microstates are equally probable. The dominance of that most probable macrostate

emerges in the limit of many independent entities, in which case we will see that it is useful to

approximate discrete random variables by continuous ones.

Imagine flipping an unbiased coin N times. Let NH be the number of heads results, and f = NH/N
be the fraction of such results.

(i) What is the probability of observing a particular sequence of heads (H) and tails (T) results, e.g.,

H T T T T H H T T H H T H... ?

(ii) How many possible flip sequences yield exactly NH heads results? Your answer should involve

the factorial function, M ! ≡ M × (M − 1)× (M − 2)× . . .× 3× 2× 1.

(iii) Write an exact equation for the probability P (NH) of observing NH heads results when the coin

is flipped N times.

(iv) Stirling’s approximation,

lnM ! ≈ M lnM −M for largeM,

allows you to simplify your result in part (iii) assuming N is very large. First, we consider a hand-

wavy way to “derive” Stirling’s approximation. We know that the integral of a function g(x) can be

approximated by a Riemann sum:

∫ b

a
dx g(x) ≈

(b−a)/∆x
∑

i=0

g(a+ i∆x)∆x

when ∆x is sufficiently small. If b− a ≫ 1, ∆x = 1 can be small enough for a good approximation

of the integral. Follow this line of argument to show Stirling’s approximation. (Hint: you will want to

consider g(x) = lnx and an appropriate choice of a and b.)

(v) Armed with Stirling’s approximation, show that P (NH) can be written in the large deviation form

P (NH = fN) ∝ e−NI(f)

when N is sufficiently large to justify Stirling’s approximation. Identify and plot I(f) as a function

of f . Notice that I does not depend on N . In other words the extensive (large) part of the problem

has dropped out and only impacts the probability through the factor that multiplies I . This is a major

simplification! You might have thought that the term in the exponent should have higher powers of

N , but it does not.

(vi) For N = 5, 25, and 100, plot e−NI(f) on the same plot. You should see that the plots are

getting more sharply peaked at f = 0.5 as N increases, but the distributions are not normalized.

To approximate the normalized probability distribution, plot e−NI(f)/
∫ 1
0 df e−NI(f) for these same

three values of N . You should see that measurements of f become more and more deterministic
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(concentrated around f = 0.5) as N increases. We explore this concentration of probability further in

Problem 4.

(vii) (OPTIONAL) Normalizing e−NI(f) may have seemed ad hoc and unsatisfying to some of you.

You might have expected that the normalization should have already been present since our expression

for P (NH) in (iii) was already normalized. The problem was that Stirling’s approximation as written

in (iv) is an approximation, but this approximation actually could have been improved to more grace-

fully handle the normalization. The problem leading-order correction is ln
√
2πn, so that Stirling’s

approximation is stated more precisely as

lnn! = n lnn− n+ ln
√
2πn+O

(

1

n

)

,

where the big-O notation implies that higher-order corrections are asymptotically at least as small

as n−1. Explain why neglecting this logarithmic contribution affects the normalization, and why

neglecting higher-order contributions will not.

(viii) (OPTIONAL) A nice way to derive that leading-order correction of part (vii) uses Laplace’s

method, which approximates integrals of exponential form associated with some large parameter λ:

∫

dx eλf(x) ≈
∫

∞

−∞

dx eλ(f(x
∗)+f ′′(x∗)(x−x∗)2/2),

where x∗ is the local maximum of f within the original domain of integration. In words, the method

simply consists of approximating f(x) as its second-order Taylor expansion where the integrand is

peaked. The resulting integral is Gaussian and hence easily evaluated. Apply Laplace’s method to the

integral representation of the factorial,

n! =

∫

∞

0
dxxne−x,

to derive the stated logarithmic correction. You will likely want to introduce the substitution x = nξ.

4. A Macroscopic Number of Spins. Now imagine the physical scenario of making a single mea-

surement (as opposed to repeated coin flips) of N ≫ 1 noninteracting spin-1/2 particles. In that

measurement, the observed z-component of each spin is up or down with equal probability.

(i) Using your work on the previous problem, approximate the probability P (f) of observing a fraction

f = Nup/N of up spins in a given observation. Write your answer in terms of the fraction f and the

number of spins N .

(ii) Although f = 1/2 is the most likely observation, a typical measurement will not yield exactly half

the spins pointing up. For Avogadro’s number of spins, N ≈ 1024, estimate the relative probability of

a small deviation δ = 10−7 from the ideal fraction, i.e., calculate P (f = 0.5 + δ)/P (f = 0.5). For

this purpose, Taylor expansion of lnP about δ = 0 is both permitted and a good idea).

(iii) For finite N , only discrete values of f are possible, but in the limit of large N , P (f) approaches

a Gaussian distribution of the form

ρ(f) =
1√
2πσ2

exp

(

−(f − µ)2

2σ2

)

with mean µ and variance σ2. In that limit, f is continuous rather than being limited to the discrete

values 0, 1/N, 2/N, . . . , 1. Using your Taylor expansion from (ii), determine µ and σ2 to obtain the
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probability distribution for ρ(f) in the large N limit. With an appropriate change of coordinates,

also determine the large N (Gaussian) limit for ρ(Nup). To make sure you have changed coordinates

correctly, confirm for yourself that your expression for ρ(Nup) is normalized.

(iv) The fraction of up spins f is intensive whereas the total number of up spins Nup is extensive.

Imagine recording both f and Nup from a measurement of a macroscopic system. Does the variance

of your measurements increase or decrease as the system is made bigger? Base your answer on your

distributions from (iii). You may find that the variance behaves differently for intensive and extensive

measurements.

(v) You may have noticed in (iii) that by moving from discrete to continuous f in the large N limit,

we have inadvertently allowed f to range from −∞ to ∞. Argue that this is not a problem.

Chem 348, Spring 2020 4


