
Chem 348 Problem Set 4 Due: Monday, June 3

1. Three-state kinetics. Consider a three-state kinetic scheme 1
k1
⇌

k′
1

2
k2
⇌

k′
2

3. That is to say,

dp1
dt

= −k1p1 + k′1p2

dp2
dt

= k1p1 − k′1p2 + k2p3 − k′2p2

dp3
dt

= −k2p3 + k′2p2,

where the net probability is normalized, p1 + p2 + p3 = 1, for all times t.

(i) The concentrations of species 1 and 3 will relax to their equilibrium concentrations with two

superimposed exponential decays. Solve the system of differential equations to show that

p1(t) = p
(eq)
1 + x1e

−t/τ1 + x2e
−t/τ2

p3(t) = p
(eq)
3 + y1e

−t/τ1 + y2e
−t/τ2 , (1)

where τ1 and τ2 are the two relaxation times with τ1 > τ2. Note that p
(eq)
i is the equilibrium

or long time limit of pi(t). Express p
(eq)
1 , p

(eq)
3 , τ1 and τ2, in terms of the four rate constants,

k1, k
′

1, k2, and k′2. To solve for x1, x2, y1, and y2 you would also need to match the initial con-

ditions p1(0) and p3(0). These expressions are nastier, so I’m not asking for them here.

Hint: First use conservation of probability to eliminate p2 from the problem, obtaining a

system of two differential equations for ṗ1(t) and ṗ3(t) in terms of p1 and p3:
(

ṗ1(t)
ṗ3(t)

)

= M

(

p1(t)
p3(t)

)

+ b. (2)

where M is a matrix and b is a vector, the components of which are all expressed in

terms of the four rate constants in the problem. Remember that the solutions to this sort

of differential equation are expressed as a superposition
(

p1(t)
p3(t)

)

=

(

ph1(t)
ph3(t)

)

+

(

pp1(t)
pp3(t)

)

,

of a homogeneous solution solving
(

ṗh1
ṗh3

)

= M

(

ph1
ph3

)

and a particular solution solving

M

(

pp1
pp3

)

+ b = 0.

The homogeneous solution can be solved (up to constants of integration) by moving to

an eigenbasis, and this should give you the τ ’s. The particular solution corresponds to

the (time-independent) equilibrium probabilities, p
(eq)
i .
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(ii) The conditions k′1 ≫ k1 and k′2 ≫ k2 coincide with state 2 being far less probable than both

states 1 and 3. When these conditions hold, use the results from Part (ii) to determine Keq =

p
(eq)
3 /p

(eq)
1 , x1, y1 and τ1 and show that x2 and y2 are comparatively negligible.

Hint: Your expressions in (i) should involve expressions that have products of a primed

and unprimed rate, e.g., k′1k2, as well as products of two unprimed rates, e.g., k1k2. In the

considered limit, k′1k2 ≫ k1k2, so you will often be able to neglect products of unprimed

rates. In approximating τ1 and τ2, you will first want to approximate the eigenvalues of

the matrix M . One of those eigenvalues could be written as

λ1 =
k1 + k′1 + k2 + k′2

2

[

− 1 +

√

1− 4
k1k2 + k′1k2 + k1k′2
(k1 + k′1 + k2 + k′2)

2

]

The second term in the square root will be small (why?), so you can Taylor expand the

square root (
√
1− x ≈ 1−x/2). Try to at least follow along enough to see why λ1 = τ−1

1

will matter but λ2 = τ−1
2 will not.

(iii) With the extreme inequalities of Part (ii) assumed at the outset, use a steady-state approximation

to determine the time dependence of p1(t) and p3(t) and demonstrate this time dependence is

the same as that found in part (ii).

2. Do you smell that? I’m worried people are going to fall asleep in lecture, so I decide to open up a

bottle of perfume at the front of the room the moment I see someone start to nod off. Let’s try to figure

out how long it will take before they smell it.

(i) Let us first assume that the random walk models we’ve worked so laboriously to understand

can help us explain the situation! In other words, we assume that each perfume molecules

can be modeled as moving in some direction until it collides with an air molecule, at which

point the perfume randomly gets kicked in a new directly. We have seen that the spread of the

random walkers (in this case perfume molecules) goes like
〈

δR2
〉

T
= 2dDT , where d is the

dimensionality and D is the perfume’s diffusion constant. Since we live in a three dimensional

world, R2 = X2 + Y 2 + Z2 and d = 3. If perfume has a diffusion constant in air of 10−6

m2s−1, estimate the time for the perfume to reach the dozing student 5 meters away.

(ii) Is your answer to (i) reasonable? What else could be going on?

(iii) While we’re crunching numbers, let’s think about the self-diffusion of water, that is to say one

molecule diffuses in a background of other water molecules (as opposed to the perfume in a

background of air). The self-diffusion constant for a water molecule in liquid water is about

10−5cm2/sec. Assuming the liquid is at equilibrium and not stirred, what are the typical times

for a water molecule to move one molecular diameter (about 0.3 nm)? What about across the

surface of a protein (about 1 nm)? Finally, a macroscopic distance (about 1 cm)?
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