
Chem 348 Problem Set 2 Due: Tuesday, May 21

1. An ideal gas on a lattice. In class we introduced Boltzmann’s microscopic definition of entropy:

SB = kB lnΩ.

A more general expression for entropy due to Gibbs is:

SG = −kB
∑

ν

P (ν) lnP (ν),

where ν is a microstate and P (ν) is the probability of that microstate.

(i) For an isolated system (with fixed energy E, number of molecules N , and volume V ) show that

SB and SG are identical. Recall that in such a system, all allowed microstates are equally likely.

(ii) For the rest of this problem, consider a collection of N indistinguishable particles arranged on a

lattice of M cells. Each cell can be occupied by at most one particle, and particles in different cells

do not interact. Calculate the total number Ω(M,N) of possible configurations for this system.

(iii) Assuming M,N , and M −N are all very large, use Stirling’s approximation to write the Boltz-

mann entropy per cell, SB/M , as a function of f ≡ N/M alone.

(iv) The occupation state of one cell in this lattice system is not affected by that of any other cell. As

a result, the total entropy can be written as S = Mscell, where scell is the entropy of a single cell.

Using Gibbs’ definition of entropy, calculate scell in terms of p1 and p0, the probabilities of finding a

particular cell occupied or unoccupied, respectively.

(v) By expressing p0 and p1 in terms of f , the fraction of occupied cells, demonstrate that the Boltz-

mann and Gibbs lattice gas entropies are the same.

(vi) Show that for the low density lattice gas (f ≪ 1),

S ≈ −kBV [ρ ln(ρv)− ρ],

where v is the volume of a single lattice cell, and ρ = N/V = N/(Mv) is the density.

(vii) From macroscopic thermodynamics we know that

dS =
1

T
dE +

p

T
dV −

µ

T
dN,

so

p

T
=

(

∂S

∂V

)

E,N

.

Use the expression you just obtained for the entropy of a low density lattice gas to explicitly compute

the partial derivative. Express your result as the familiar ideal gas law: pV = NkBT . (You may be

more familiar with pV = nRT . Make sure you think through the distinction between the two forms

if it’s not immediately obvious to you.)

(viii) An ideal gas is one with particles which do not interact. Is the lattice gas model whose entropy

you found in parts (iii) through (v) an ideal gas? In other words, are there any interactions between

the particles? Explain how your answer does or does not agree with your derivation of an ideal gas

law in (vii).
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“[The Boltzmann distribution] is the summit of statistical mechanics, and the entire subject is either

the slide-down from this summit, as the principle is applied to various cases, or the climb-up to where

the fundamental law is derived.” —Richard Feynman

2. The climb up. In class we presented a reasonable but less than rigorous derivation of the Boltzmann

distribution,

P (ν) ∝ e−βE(ν),

for microstates ν of a system that can exchange energy with a very large bath. This result was obtained

from the fundamental relationship

P (ν) ∝ ΩB(ET − E(ν))

through a Taylor expansion of lnΩB, where ET denotes the total energy shared by system and bath,

and ΩB(EB) is the number of bath microstates with energy EB. Here you will develop this argument

a little more carefully (and perhaps a little more convincingly—you may have wondered, for example,

why we were Taylor expanding lnΩB and not ΩB).

We will assume that ΩB has a large deviation form,

ΩB = [ωB(ǫB)]
NB ,

where NB is the number of molecules in the bath, ǫB ≡ EB/NB is the corresponding energy per

molecule, and ωB(ǫB) is a smooth function that does not depend on the size of the bath. As in lecture

the dependence of ΩB on EB will be used to define a property β of the bath:

β ≡

(

∂ lnΩB

∂EB

)

NB,VB

(i) Show that β is insensitive to the extent of the bath. In particular, relate β to ωB and derivatives of

ωB with respect to ǫB. Explain why this relationship indicates independence of the bath’s size. (Since

we saw in lecture that this β is an inverse temperature, it should be pleasing that it doesn’t depend on

bath size. When I say to put a test tube in a 25◦ C water bath, I shouldn’t have to specify if the bath

is 1 liter or 2 liters in volume. Assuming the volume of the bath is very big compared to the system, I

should be able to specify β alone.)

(ii) Show that
(

∂ΩB

∂EB

)

NB,VB

= βΩB

(iii) Show that
(

∂2ΩB

∂E2
B

)

NB,VB

= β2ΩB + c.

Identify the quantity c and explain why it can be neglected in the limit NB → ∞.

(iv) Calculate
(

∂nΩB

∂En
B

)

NB,VB

for arbitrary (integer) n. Do not include any terms that are negligible in the limit NB → ∞.
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(v) Consider the Taylor expansion

ΩB(ET − E) = ΩB(ET)− E

(

∂ΩB

∂EB

)

NB,VB

+
1

2
E2

(

∂2ΩB

∂E2
B

)

NB,VB

+ . . .

=
∞
∑

n=0

1

n!
(−E)n

(

∂nΩB

∂En
B

)

NB,VB

,

where all partial derivatives are implicitly evaluated at E = 0.

Combining your results together with this expansion, show that the relationship

ΩB(ET − E(ν)) ∝ e−βE(ν)

is exact in the limit NB → ∞ of an infinitely large bath.

3. The slide down. Remarkably, the decomposition between system and bath (as well as our counting

tools with partition functions) work equally well in a quantum setting as a classical setting. Consider

a one-dimensional quantum harmonic oscillator, which has equally spaced discrete energy levels:
1
2~ω,

3
2~ω,

5
2~ω . . .. (Warning: this ω has nothing to do with what we were calling ω in Problem 2,

but the notation is reasonably standard in both cases. I’m sticking with it despite the possibility for

confusion.) We assume the harmonic oscillator is in contact with a large thermal bath at temperature

T .

(i) We have seen that the probability of occupying each state is given by the Boltzmann distribution:

P (ν) =
e−E(ν)/kBT

Q
,

where E(ν) is the energy of microstate ν and Q is a normalization factor, also called the canonical

partition function. For the quantum harmonic oscillator we have a relatively simple expression for

E(ν). Use the equal spacing of energy levels to express the normalization factor Q as a function of

T . [Hint: a geometric series can be summed exactly.]

(ii) By differentiating Q appropriately, determine the average energy 〈E〉, which should also be a

function of T .

(iii) A common experiment is to measure how much energy must be put into a system to increase the

temperature, the so-called heat capacity. In other words, the heat capacity measures the rate of energy

increase with increasing temperature:

C =
∂ 〈E〉

∂T
.

By writing 〈E〉 in terms of a derivative of lnQ, demonstrate that C is related to a second derivative of

lnQ. Use this observation to compute both the typical size of the energy fluctuations
〈

δE2
〉

and the

heat capacity C. Both of these quantities should be functions of the temperature.

(iv) Now imagine that the quantum harmonic oscillator is actually a three-dimensional harmonic os-

cillator but that the oscillations in the x, y, and z dimensions are independent. Then

Q3D =
∞
∑

x=0

∞
∑

y=0

∞
∑

z=0

e−(Ex+Ey+Ez)/kBT .
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By separating out the three sums, relate Q3D to Q1D that you computed in part (a). What will be the

new values of 〈E〉,
〈

δE2
〉

, and C for the three-dimensional oscillator?

(v) Repeat your logic from (iv) to determine C for N three-dimensional harmonic oscillators. Ein-

stein considered this as a model for vibrations of the positions of N atoms around their equilibrium

positions in a crystal. At that time, measurements of heat capacity in macroscopic materials could be

handled in the lab even if the single-atom vibrations could not be directly measured. By detecting how

C varied with temperature T , Einstein argued that one could infer microscopic information about the

nature of the vibrations. Pretty cool!
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