
Chem 348 Problem Set 1 Due: Monday, May 13

1. Coin Flips. Imagine flipping an unbiased coin N times. Let NH be the number of heads results, and

f = NH/N be the fraction of such results.

(i) What is the probability of observing a particular sequence of heads (H) and tails (T) results, e.g.,

H T T T T H H T T H H T H... ?

(ii) How many possible flip sequences yield exactly NH heads results? Your answer should involve

the factorial function, M ! ≡ M × (M − 1)× (M − 2)× . . .× 3× 2× 1.

(iii) Write an exact equation for the probability P (NH) of observing NH heads results when the coin

is flipped N times.

(iv) Stirling’s approximation,

lnM ! ≈ M lnM −M for largeM,

allows you to simplify your result in part (iii) assuming N is very large. First, we consider a hand-

wavy way to “derive” Stirling’s approximation. We know that the integral of a function g(x) can be

approximated by a Riemann sum:

∫ b

a
g(x) ≈

(b−a)/∆x
∑

i=0

g(a+ i∆x)∆x

when ∆x is sufficiently small. If b− a ≫ 1, ∆x = 1 can be small enough for a good approximation

of the integral. Follow this line of argument to show Stirling’s approximation. (Hint: you will want to

consider g(x) = lnx and an appropriate choice of a and b).

(v) Armed with Stirling’s approximation, show that P (NH) can be written in the so-called “large

deviation form”:

P (NH) ≈ e−NI(f)

when N is sufficiently large to justify Stirling’s approximation. Identify and plot I(f) as a function

of f .

(vi) Reflect on the fact that I does not depend on N . In other words the extensive (large) part of the

problem has dropped out and only impacts the probability through the factor that multiplies I . This

is a major simplification! You might have thought that the term in the exponent should have higher

powers of N , but it does not.

2. A Macroscopic Number of Spins. Now imagine the physical scenario of making a single mea-

surement (as opposed to repeated coin flips) of N ≫ 1 noninteracting spin-1/2 particles. In that

measurement, the observed z-component of each spin is up or down with equal probability.

(i) What is the probability of observing a number Nup of up spins in a given observation? Write your

answer in terms of the fraction f = Nup/N .

(ii) Although Nup = N/2 is the most likely observation, a typical measurement will not yield exactly

half the spins pointing up. For Avogadro’s number of spins, N ≈ 1024, estimate the relative probabil-

ity of a small deviation δ = 0.0000001 from the ideal fraction, i.e., calculate P (f = 0.5+ δ)/P (f =
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0.5). Your numerical answer need not be highly accurate; just determine the order of magnitude. (For

this purpose, Taylor expansion of lnP about δ = 0 is both permitted and a good idea).

(iii) In the large N limit, the distribution P (f) becomes well-approximated by a Gaussian distribution.

Derive this Gaussian using your Taylor expansion in (ii). Use that result to determine the Gaussian

distribution P (Nup).

(iv) What does your result imply about the reproducibility of measurements on macroscopic systems?

Imagine repeating the measurement many times and getting the fraction f of up spins from each

repeated experiment. Would the variance of those values of f be large or small? Specifically, how

would the variance depend on N? What about the variance of the values of Nup collected from each

experiment?

3. A simple model of a polymer. You’re no doubt aware that the shape a protein folds up into is

influenced by energetic interactions between amino acids. You may not have given as much thought

to the influence of entropy on a protein’s shape. To focus on that concept, we consider the simplest

model for conformational fluctuations of a long chain molecule, formed from n polymer segments

connected end to end. Each segment i = 1, 2, . . . , n (perhaps comprising many chemical units)

has a fixed length ℓ and an orientation b̂i that is parallel to one of d Cartesian axes (x̂, ŷ, or ẑ in 3

dimensions). In other words, the molecular configuration traces a random walk on a d−dimensional

cubic lattice:

Imagine that the orientations of different segments are statistically independent, and that there is no

preferred orientation, 〈b̂i〉 = 0 and 〈b̂i · b̂j〉 = δij , where δij = 1 if i = j and vanishes otherwise.

(i) Show that the entropy of such an ideal chain molecule has the form S = kBn ln a. Determine the

parameter a as a function of dimensionality d.

(ii) What is the expected value of R, that is to say what is 〈R〉, where R = ℓ
∑n

i=1 b̂i is the end-to-end

vector?

(iii) Is this the most likely value of R? In other words, there is some probability distribution P (R) de-

scribing the likelihood of every possible vector R. Does 〈R〉 coincide with the peak of that probability

distribution?

(iv) Imagine n is very large and I use a computer program to take random steps on the lattice, thereby

generating a single sample of the polymer. (I have provided a Mathematica notebook, ps1.nb, that

does such a simulation!) Do you think the sample will have sections that looked bunched up as

though the polymer is partially “folded” or do you expect the polymer to be completely spread out
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and “unfolded”? Notice that there is nothing like a Coulomb attraction pulling any of the monomers

closer together. The expected behavior of this model is purely entropic (due to counting the number

of possibilities).

(vi) Given your response to part (v), suggest a reason that the root mean squared end-to-end distance
√

〈R2〉 would be a better measure of the size of the polymer than the average displacement vector

〈R〉.
(vii) Calculate the mean squared end-to-end distance of the chain molecule,

〈

R2
〉

. Your result should

indicate that the typical distance between ends of the molecule grows with chain length as
√

〈R2〉 ∝
nν . Identify the exponent ν. How does your result depend on dimensionality d?

(viii) For a (three-dimensional) polymer in “good” solvent, experiments yield ν ≈ 3/5. (A “good”

solvent is one that prevents the molecule from collapsing onto itself, i.e., effective interactions among

different segments are repulsive.) Compare this measured value with the one you calculated, and

comment on the discrepancy.

4. Fun with Gaussians. One of the most important continuous distributions is the Gaussian distribution

P (x) =
1√
2πσ2

exp

(

−(x− µ)2

2σ2

)

.

You quite possibly already have some familiarity with this distribution. These problems are either a

crash course or a refresher. I do not consider it important that you “discover” the standard tricks on

your own, but I do think you should be aware of them. Please talk to me or to other students if this is

foreign!

(i) Normalization: Show that
∫

dx P (x) = 1. [Standard trick: Convert to a two dimensional integral

over a joint distribution of identical, independent Gaussians for the x and y coordinates. Remind

yourself what a Jacobian is.]

(ii) Mean: Show that 〈x〉 ≡
∫

∞

−∞
dx xP (x) = µ. [Standard trick: Substitute u = x − µ and notice

that an integral cancels by symmetry.]

(iii) Variance: Show that
〈

(δx)2
〉

≡
∫

∞

−∞
dx (x − µ)2P (x) = σ2. [Standard trick: From (i) and

symmetry find the integral of e−αx2

from 0 to ∞. Differentiate with respect to α.]

(iv) (Optional) Generating function: Show that
〈

eβx
〉

=
∫

∞

−∞
dx eβxP (x) = exp

(

βµ+ σ2β2

2

)

.

[Standard trick: Complete the square.]

(v) (Optional) Cumulant generating function: The cumulant generating function, ln
〈

eβx
〉

follows

simply from (iv). Comment on how this can be used to verify that the mean and variance are µ and

σ2, respectively. What does the Gaussian distribution’s cumulant generating function tell you about

the value of the higher order cumulants.
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