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Abstract

A model is adopted to simulate molecular dynamics near metallic materi-

als. Gaussian charges are induced to maintain the equipotential constraint

of the metal. A regularization of the required Gaussian charge Ewald

summation is performed using convergence factor methods. A particu-

larly simple expression for the electrostatic energy is obtained, developed

for a simple test case, and finally used to construct a classical model for

metallic rigid carbon nanotubes (CNTs). Parameterization of the model

is discussed and compared to both continuum electrostatic theory and to

density functional representations of the metal surface. The model en-

ables the study of the direct filling of CNTs by molten salts. A binary

molten salt, modeled using a Born-Mayer potential, is observed to form

inorganic nanotubes (INTs) within the CNTs, and these structures are

seen to be insensitive to the treatment of the CNT as a metal or insula-

tor. The INT formation is however sensitive to the addition of a voltage

bias to the metallic CNT. By considering INT growth mechanisms driven

by an external bias, it is shown that the distribution of computationally

observed INT morphologies is path-dependent due to kinetic barriers. As

such, the distribution of structures is out of equilibrium and therefore

cannot be understood through the free energies.
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Introduction

Much attention has been given to the broad field of nanotechnology. The interest

stems from the fact that ordered structures on the nanoscale often have structural and

electronic properties that are quite distinct from bulk materials. From an engineering

perspective these properties could be useful, yet our ability to utilize nanostructures

hinges upon our ability to construct such devices. Given the small scale, it is likely

that formation of future nanodevices will rely heavily on the ability to bias self-

assembly. One common proposal is that self-assembly could be controlled by providing

a suitable template. In this thesis we present computational experiments aimed at

better understanding how much control can reasonably be obtained for the particular

templated growth problem of molten salt crystalization inside a carbon nanotube

(CNT). Theoretical work predicts that the internal salt could crystallize into a number

of distinct inorganic nanotubular structures, providing an ideal model system on

which to explore morphological control of self-assembled structures.

For this templated growth problem there are a handful of macroscopically control-

lable parameters that could conceivably influence the crystalization. The size, shape,

and electronic structure of the template can be controlled by selecting a particular

CNT morphology, the temperature and pressure may be varied, or a potential bias

can be applied to the tube. The effects of tuning the temperature, pressure, and

CNT radius have been previously explored within computational models. [5–7, 66–

73] We introduce a classical model of a metallic carbon nanotube, which allows us

to also investigate the impact of the CNT electronic structure in both floating and

electric potential-biased tubes. The potential-biased growth exhibits a radically differ-

ent mechanism than previously studied charge-neutral simulations. The mechanistic

differences are shown to impact the probability of forming the different inorganic

nanotubes (INTs), indicating that the crystalization cannot be understood merely

through equilibrium statistical mechanics. The final distribution of structures is not

in equilibrium because kinetic barriers trap the system in one of many local minima.

The macroscopic controls are not sufficient to strongly bias the system toward one
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particular minimum, a feature which is likely to be general to inorganic systems whose

interactions lack specificity.

The thesis is structured as follows. We begin by reviewing in Chapter 1 the prior

work on INT formation within CNTs and on classical descriptions of metals. To

simulate a conducting electrode we must adapt the Ewald summation procedure in a

manner similar to Reed et al. [40], so in Chapters 2 and 3 we turn our attention to the

method of Ewald summation using the approaches of Bertaut [4] and of de Leeuw,

Perram, and Smith [15], respectively. The energy expressions derived in Chapters

2 and 3 are used to develop the numerical classical dynamics schemes of Chapter

4, with particular attention given to the numerical methods necessary for handling

dynamics of the induced charge density that builds up on a conducting CNT. These

methods are compared with continuum classical electrostatics in Chapter 5, where the

influence of the metal model’s single parameter is studied. Finally, in Chapter 6 we

present and discuss the results of the numerical experiments, ultimately concluding

that the chaotic classical dynamics results in a distribution of INT morphologies.

The macroscopic control parameters can influence this distribution by altering the

mechanism of filling, but the distribution remains broadly spread over several distinct

INTs, indicating that the controls are too crude to faithfully grow a single INT.

It is worth noting that the intermediate chapters are densely packed with math-

ematics, and a reader may well resent the excessive detail. It seems customary for

authors to avoid this level of detail and present rather cursory derivations devoid of

the grungy intermediate algebra. This approach has the advantage of presenting a

compact set of equations without the distractions of the messy calculations, which

often simplify into much more appealing forms. Unfortunately the result is that many

calculations come across as mystical, and perhaps worst of all it is not clear how to

simply extend the results to a slightly more general problem. Chapter 3 presents a

natural (and actually a fairly trivial) extension of Ewald electrostatics to Gaussian

charge distributions, but the simplicity of the extension is only made obvious when

the full derivation of the point charge problem is made laboriously clear. For this rea-

son, I felt strongly that it was appropriate to include intermediate calculations almost

to a gruesome level. Especially tedious peripheral calculations have been relegated

to appendices, but the main text still includes significantly more algebraic manipula-

tions than is standard. Readers who find this distracting are advised to simply skip

to the final line of a derivation to see the compact form.
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Chapter 1

Background

Since they were discovered, carbon nanotubes (CNTs) have excited scientists with

their potential to display unique physiochemical properties. As is generally the case,

the structural morphology of the CNTs determines the physical properties, so to

make sense of the diverse properties it is natural to study the equally diverse tubu-

lar geometries. Much work has been devoted to the direct utilization of the CNT’s

structural and electronic properties, but the tubes can also serve as templates for the

selective growth of new materials. One can imagine using CNTs to bias other inor-

ganic materials into forming pseudo-one-dimensional structures grown up the middle

of the tube. Indeed, it has been observed experimentally through high resolution

transmission electron microscopy (HRTEM) studies that metal halide molten salts

can permeate the nanotubes and crystallize inside the pore. [34, 52–55] Altering the

morphology of the CNT influences the internal inorganic structure, but the effect

of the template is complex. Wilson showed that changing the radius of the CNT

impacts the energetics of inorganic crystallite growth in a straightforward manner,

which we will shortly describe further. [70, 72] The CNT morphology affects not only

the tube radius, but also the electronic properties of the tube. Roughly one-third of

the possible CNT structures are metallic, and the metallicity of the tube could also

be expected to impact the growth of ionic structures. To probe these effects we must

incorporate a classical metallicity into Wilson’s model, something we do by using

the method of Siepmann and Sprik [49] as implemented by Reed et al. [40] Before

extending these methods, it is useful to review the pertinent prior work. First, a cur-

sory introduction to CNT morphology and electronic structure is provided, followed

by discussion of the experimental and theoretical studies of CNT filling. We then

shift gears and review simulation of metal surfaces to understand how metallic tubes

can be simulated. The Siepmann and Sprik method we will use introduces numerical
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complications related to the computation of the long-range Coulomb energies, the

review of which spills over into the following chapters.

1.1 Carbon Nanotube Morphology

The carbons in CNTs are three-coordinate, so if the tube were sliced down its length

and unrolled, the carbons would lie on a hexagonal graphene grid. Conversely, to

understand the stable tubular structures, one need only enumerate the ways a hexag-

onal lattice can be periodically rolled to give a tube. We denote the (non-orthogonal)

principal lattice vectors a1 and a2, and note that the vector wrapping around the

cylinder perpendicular to its length must be a linear combination of a1 and a2 with

integer coefficients. This circumferential vector is known as the chiral vector, Ch, and

its restriction to integer superpositions of a1 and a2 ensures that the tip and tail of

Ch both rest on carbon sites, which will be mapped onto each other upon folding.

In fact all pairs (n,m) with Ch = na1 + ma2 give rise to a stable tube when the

endpoints of Ch are folded around to connect. The natural classification of the CNT

morphologies is then provided by specifying the components n and m of Ch. Some

properties of the tube can be computed directly from this classification. For example,

the diameter is given by

d =
|Ch|
π

=
a
√

3 (n2 +m2 + nm)

π
, (1.1)

where a is the C-C bond length. It is conventional to also define a chiral angle, θ,

which gives the angle at which the nearest non-bonded neighbor spirals around the

tube. Like the diameter, θ is a simple function of n and m,

θ = cos−1

(

2n+m

2
√
n2 +m2 + nm

)

(1.2)

A much more complete discussion of the morphology as well as the group theoretic

consequences is provided in Saito, Dresselhaus, and Dresselhaus. [46] We reproduce

their illustration of the geometry in Figure 1.1 to make the definitions of Ch and θ

more clear.

1.2 Carbon Nanotube Electronic Structure

Just as the CNT structure can be derived from that of graphene, the electronic

structure can also be related. A simple tight binding analysis of graphene yields
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Figure 1.1: The structure of a carbon nanotube can be thought of as arising from a
rolled hexagonal lattice. For example connecting points O to A and B to B’ yields a
(4,2) nanotube with translation vector T, chiral vector Ch, and chiral angle θ. This
figure is reproduced from Reference [46]

the well known result that graphene has a zero band gap.1 This can be seen by

Figure 1.2, which shows the band energy of the π and π∗ bands as a function of the

two dimensional wavevector. This wavevector is two dimensional since the graphene

lattice has two infinitely replicated directions. In contrast, nanotubes contain only

one infinite direction (T in Figure 1.1). By associating the ends of Ch, only values

of the wavevector, k, which satisfy the periodicity in the direction of Ch are allowed.

The zone-folding method for approximating CNT electronic structure then identifies

the nanotube’s 1D bands as projections of the 2D bands in Figure 1.2 onto the

discrete set of lines through reciprocal space which satisfy the Ch periodicity. Under

this approximation one can show that the 1D subbands will have zero band gap

if the restricted k vectors run through the graphene conical intersections. It can

be shown that this is the case if and only if n − m is evenly divisible by three.

[16, 36, 46] Assuming the CNT electronic structure can be understood by graphene’s

tight binding solution, one-third of the CNT morphologies are then expected to be

metallic while the remainder are semiconducting. Tubes with small radii do not

1It is technically a “zero band gap semiconductor” or a “semimetal” rather than a metal, but
this is not important for our purposes.
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Figure 1.2: The first Brillouin zone of the π and π∗ bands of a tight binding model of
graphene. Note the conical intersections at the vertices of the Brillouin zone at which
the band gap vanishes. When 1D sub-bands cut through these vertices the resultant
tube is (to first approximation) a metal.

perfectly satisfy this rule because the high curvature mixes the sp2 and pz orbitals.

[38] Further refinements can be made by extending the graphene tight binding model

beyond nearest neighbor [42], but these improvements to the zone-folding method are

irrelevant to this work. The critical aspect is that CNTs are either conducting or

semiconducting as a function of morphology.
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1.3 CNT Filling

High resolution transmission electron microscopy (HRTEM) has enabled a series of

experimental investigations into the structure of a variety of CNT-enclosed metal

cation salts: NiO, Bi2O3, V2O5, MoO3 [1–3, 11, 61], UCl4 [50], AgCl/AgBr [53, 55],

KI [34, 54], BaI2 [51], CoI2 [37], Sb2O3 [24], metal trihalides [21–23], PbI2 [19], HgTe

[10], ZrCl4 [8], and PbO [29]. Ionic salts are of particular interest because the enclosed

structures can be formed simply by allowing a molten salt to diffuse into the CNT

[34, 53–55] since these materials have surface tensions which are small enough that

the CNT is not crushed. [66] The salts have been observed to form crystals which

can roughly be described as rock salt [34, 54] or wurtzite structures [53, 55], but some

bond distances are notably distorted from the ordinary bulk structures. The distor-

tions of the rock salt KI structures were reproduced and rationalized by molecular

dynamics simulation and energy minimization calculations [67, 73]. Further simula-

tions have shown that the rock salt and wurtzite structures can both be understood

as members of a large class of pseudo-one-dimensional structures, which cannot all

be directly related to bulk crystal structures. [66, 68–70] This more general classifi-

cation, based on the folding of square and hexagonal lattices, predicts the existence

of stable inorganic nanotubes (INTs), which have yet to be experimentally observed.

[68–72]

1.3.1 Stable Structures

The rock salt KI structures were originally described as 2 × 2 ×∞ and 3 × 3 ×∞
crystallites. It was observed that the most stable enclosed structure would depend

strongly on the radius of the enclosing CNT. Using a particularly simple Lennard-

Jones description of the CNT potential and Born-Mayer electrostatics, Wilson showed

that the energy of stable crystallites indeed depends strongly on the CNT radius. [66]

A phase diagram of the most stable structures as a function of CNT radius, reproduced

here as Figure 1.3, shows this radius-dependence, but it also demonstrates that the

particular CNT morphology (i. e. (n, 0) versus (n, n) CNTs) is not influential between

tubes of comparable radii. Rather than considering the KI crystals as a fragment of a

bulk crystal, Wilson proposed that it could be understood as the folding of a square

net, much like the folding of hexagonal nets gives rise to nanotubes (see Section

1.1). [69] This construction unifies the observation of both rock salt and wurtzite

fragments, as the latter can be considered to result from folding a hexagonal net in

exactly the same way as CNTs. The only difference is that in the ionic structures the

7



Figure 1.3: Calculated phase diagram for KI enclosed in carbon nanotubes as a func-
tion of the CNT radius. Unsurprisingly as the CNT radius increases larger crystallites
are stabilized. Perhaps more surprising is the diversity of structures, which are more
compactly classified in Wilson’s later work. Thicker symbols are CNTs of the form
(n, n), while the other symbols are (n, 0). Note that these CNT morphological differ-
ences do not significantly influence the energy calculations. This figure is reproduced
from Reference [66]

bipartite nature of the lattice is significant since anions and cations are interspersed.

The net-folding construction is especially useful for classifying the ionic structures

with a compact nomenclature. As with CNTs themselves the chiral vector uniquely

defines the structure when combined with a specification of whether the underlying

lattice is square or hexagonal. In addition to the convenient unified nomenclature,

the construction suggests that the experimentally observed structures may be part of

a much larger class of stable tubular structures of the form (n,m)X , where X = sq

or hex denotes the underlying lattice.

While such inorganic nanotubes have not been experimentally observed as inclu-

sions of CNT, both ionic and covalent INTs have been constructed by other methods

from a variety of materials including MoS2, WS2 [60], NiCl2 [27], BN, and BN/C

composites [32, 58]. The classical ionic potential model that predict the KI deforma-

tions is general and transferable, such that it can also explore the stability of INTs.

The potential model parameters can be adapted to predict either six-coordinate or

four-coordinate bulk structures, an adaptation that physical corresponds to changing

ionic radii. [68, 70] These parameters give rise to structures which are built upon
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four-coordinate square nets and three-coordinate hexagonal nets respectively. Wil-

son showed that when the potential model’s parameters are tuned to values that

would give rise to bulk wurtzite, INTs spontaneously form inside CNTs, provided

the CNT radius is sufficiently large. [68, 70, 71] A phase diagram of these INTs can

be constructed in the same way it was for KI. For reference, the phase diagram is

reproduced from Reference [70] as Figure 1.4. Phase diagrams are computed based on

Figure 1.4: Calculated phase diagram for a generic MX ionic salt enclosed in carbon
nanotubes as a function of the CNT radius. Curves show the energy of particular
INTs inserted into a CNT of the given radius as computed by energy minimization
techniques. The “static” phase diagram across the bottom gives the minimum energy
INT for that CNT radius. The “dynamic” phase diagram is the structure(s) that re-
sulted from molecular dynamics simulation. This figure is reproduced from Reference
[70]

both energy minimization calculations and molecular dynamics simulations. These

two diagrams differ slightly, most significantly in that the molecular dynamics simu-

lations sometimes yield multiple different INTs grown within the same CNT. Simple

analytic models based upon the stresses of folding a hexagonal net and the Lennard-

Jones interaction with a cylindrical tube can be used to identify several low-lying INT

structures [70], but a distribution of these structures is observed by the molecular dy-

namics, indicating that entropic and/or kinetic effects are significant. By comparing

the density of vibrational states in (n, 0) and (n, n) tubes, Wilson suggests that en-

tropic differences between the INTs is negligible and that the relative lack of (n, 0)

9



type tubes is largely a kinetic effect. [72] Introduction of a voltage bias allows for

a distinct mechanism of INT formation, providing a method to better explore this

kinetic effect, something we will discuss in Chapter 6.

1.3.2 Dynamics of INT Formation

In addition to providing information about energy minima, the computational model

provides dynamics of the filling events. As will be described in Chapter 6, typical

molecular dynamics simulations allow a capped, empty CNT to equilibrate while

immersed in a molten salt. The caps are removed and molecular dynamics is carried

out in either the NVT or NPT ensemble. Because the liquid is charged and therefore

highly structured, a significant liquid reorganization is required before charge-neutral

chains begin to diffuse into the tube. This reorganization tends to take on the order of

30 ps, but the reorganization time is a function of CNT size and is widely variant since

the liquid reorganization requires rare fluctuations that lead to the development of a

loop which threads into the CNT. Once the appropriate initial fluctuation occurs, the

salt rapidly wets and fills the CNT. [70] Characteristic filling profiles of the number

of enclosed ions versus time are reproduced in Figure 1.5 from Reference [72].

Figure 1.5: Typical filing profiles showing the number of ions inside the CNT as
a function of time. The characteristic time lag, tlag reflects a liquid reorganization
time, which increases as the CNT radius decreases. This figure is reproduced from
Reference [72]
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Wilson has postulated that the particular way in which the initial charge-neutral

loop threads its way into the CNT may account for the relative lack of (n, 0) tubes

observed by computer simulation. [72] He has also observed that subsequent diffusion

of ions into the tube proceeds rapidly as ions are effectively passed down an already

formed chain. [71] As mentioned, the relative importance of these mechanistic details

can be better understood by comparing to crystal growth within a voltage-biased

nanotube, which does not proceed by the diffusion of charge-neutral loops.

1.4 Simulation of Metallic Surfaces

Wilson’s results that we have discussed pertain to molecular dynamics of an ionic salt

in a rigid Lennard-Jones tube. Bishop and Wilson have also extended these studies

to a flexible model of CNTs [5–7], but notably absent from all of the prior simulation

work is the CNT electronic structure’s influence on INT formation. Metallic CNTs

support induced surface charge densities and the forces exerted by this surface charge

must be included in any simple classical model of a metal tube. If the nanotube

could be treated as a continuous surface, an image charge (or more generally Green’s

function) approach could be applied to compensate for the induced charge. [30]

Indeed, the work of Cui can provide an analytic description for the behavior of ions

near a cylindrical metal surface.2 [13] Unfortunately the analytic Green’s function

approach is only valid far from an equipotential cylindrical surface since the atomic

detail of the metal surface cannot be ignored for distances less than 7.5 Å. [25] At this

range, the atomic corrugations in the equipotential surface cause the image charge

approach to break down. [31] This break down can be understood by the fact that

classical continuum electrostatics assumes a smoothness of the metal surface on all

scales, but a molecular surface deviates from this idealized surface geometry.

Rather than approach the induced charge problem from a fully analytic approach,

we will use classical methods that take advantage of computational power to explicitly

describe the surface charge density. By directly treating the surface charge density

2It is worth noting that the standard image charge problems (Section 5.2.1) suggest that the
method is more useful than it generally is. When the conducting surface is planar or spherical the
surface charge density induced by point charges can be replaced by a collection of image charges on
the other side of the metal surface which are themselves point charges. The power of the method
arises from the fact that calculating the force due to the surface charge would require integrating

over that surface charge density, but the image charge approach allows one to merely sum over
image point charges. All other geometries of metal surfaces require that the image charges be a
more complicated charge distribution, not just a single point charge. Integrating over this (often
complicated) image charge distribution is not necessarily any easier than just dealing with the surface
charge distribution in the first place.
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as a grid of point charges, it was shown that the essential physics of a point charge

interacting with an Al surface could be captured down to 2.5 Å as compared with

density function theory (DFT) calculations. [18] In an approach first suggested by

Siepmann and Sprik, the surface charge can instead be expanded onto a basis of

Gaussian charges centered on each metal site, which should better represent the

delocalized nature of metallic charge. [49] The magnitudes of these Gaussian charges

are adjusted to minimize the Coulomb energy subject to an equipotential constraint

which is imposed site-wise. The constraint that the electric potential be equal only

at the metal sites, not along a continuous surface, is purposely weaker than the

traditional analytic description of an equipotential metal surface. It is the “weakness”

of this constraint that allows the described method to work since the Gaussian charges

provide a natural way of imposing a corrugated equipotential surface. The model has

the added benefit of applying regardless of the metal geometry, such that it can be

extended to the flexible nanotubes of Bishop and Wilson. This extension is not carried

out in this thesis, but it is a natural future step.

To compute the surface charge density and the forces on the ions, the Coulomb

energy must be derived. Because the Coulomb potential is particularly long-ranged,

the interaction cannot be simply truncated. A standard technique for bypassing this

problem is to use the method of Ewald summation. [17, 20] The Ewald summation

expression for the Coulomb energy of a mixed system consisting of both the Gaus-

sians (metal sites) and point charges (ions) introduces small complications that are

not present in the normal point charge calculations. Reed et al. provide the gen-

eral framework for the Gaussian extension of Ewald summation, but we correct an

error to yield a physically obvious result. [40] The next three chapters are devoted

to the analytic details of implementing the Siepmann and Sprik model. First we

review a standard presentation of Ewald summation, noting how it could be adapted

to describe the energy between Gaussian charges. Next we present a more formal

computation that places the Ewald procedure on firm mathematical ground while

providing a computationally efficient form of the energy. Finally we demonstrate in

Chapter 4 how this energy is used to solve for the induced charge density. So, without

further ado, let’s review classic Ewald summation.
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Chapter 2

Review of Ewald Summation using
the Bertaut Method

2.1 Motivation

Calculating the electrostatic interactions of a finite number of charges is a trivial

matter. The total interaction can be decomposed into interactions between pairs of

charges, which is described by the ordinary r−1 Coulomb potential. Due to computa-

tional limitations, however, typical molecular simulations cannot treat a system with

sufficiently many independent atoms to appropriately approximate the bulk. In or-

der to avoid undesirable finite system boundary effects, simulations of the condensed

phase routinely make use of periodic boundary conditions to mimic an extended sys-

tem. [20] While periodic boundary conditions succeed in eliminating the surface of a

simulation cell, they introduce an infinite number of periodic images for each charge,

thereby complicating the electrostatics. Specifically, the electric potential at site i for

a periodic array of point charges is given by

φ(ri) =
∑

j,n

′ qj
|rij + nL| , (2.1)

where the charge qj is located at rj. We assume a cubic unit cell with length L and

primitive unit cell vectors n. The prime means the j = i,n = 0 term is not summed

over. In other words a point charge doesn’t contribute to its own potential, but the

periodic images of that point charge do contribute (j = i, n 6= 0 terms). It seems that

Equation (2.1) should be sufficient to determine the Coulomb energy for a periodically

replicated unit cell, but in practice we must truncate the periodic array and add a

tail correction that approximates the average behavior of the truncated terms. This

scheme is simple for short-range potentials, such as the Lennard-Jones potential [20,
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pg 35], but in the case of the Coulomb potential the tail correction would be of the

form

φtail ∝
Nρ

2

∫ ∞

rc

dr

(

1

r

)

4πr2,

where rc is the cut-off radius, N is the number of particles in the simulation cell, and

ρ is the average particle density. This tail correction integral clearly diverges since

the 1/r potential is too long-ranged.

The difficulty lies in the fact that we are trying to study a charge distribution

which extends out to infinity. If we truncate the system at any finite size, we neglect

an infinite number of point charges outside the cut-off radius, each contributing a

1/r potential that falls off too slowly to merely be neglected. Rather than applying

a cut-off in real space, a Fourier space cut-off could naturally include the infinite

spacial extent, offering some hope of convergence. The Fourier sum, however, con-

verges slowly and it is actually a clever mixture of real space and Fourier space terms

that allows one to express the potential as the sum of two rapidly convergent series.

This decomposition into a real space and reciprocal space sum was first shown by

Ewald in 1921. [17] Perhaps the clearest physically motivated derivation follows the

approach of Bertaut [4] which has been frequently reproduced. [15, 20] We repro-

duce this approach yet again with slightly more detail than is customary in order to

make the derivation as straightforward as possible. This method will be extended to

Gaussian charges in Section 2.8, but that result will only be useful if the Gaussians

are sufficiently broad. To treat the general Gaussian charge problem we will use the

more formal approach of de Leeuw et al. in Chapter 3. [15]

2.2 Basic Approach

In real space, Poisson’s equation is simply

∇2φ(r) = −4πρ(r),

with ρ and φ being the charge density and electric potential respectively. Note that

the linearity of this equation allows us to break the problem up into superimposed

charge distributions.

∇2 (φ1 + φ2) = ∇2φ1 +∇2φ2 = −4πρ1 − 4πρ2 = −4π(ρ1 + ρ2)

If one can find the potential associated with both ρ1 and ρ2 individually then the po-

tential of the superimposed charge distribution is automatically provided by the lin-

earity of the Poisson equation. The Bertaut method makes use of this decomposition
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by considering the infinitely replicated charge distribution, ρ(r), as a superposition

of mathematically convenient terms. Specifically, our periodic array of point charges

can be re-expressed as

ρ(r) =
∑

j,n

qjδ(r− rj)

=

[

∑

j,n

qj

(

δ (r− rj)−
(

α2

π

)3/2

e−α2|r−rj |2
)]

+
∑

j,n

qj

(

α2

π

)3/2

e−α2|r−rj |2 ,

(2.2)

where δ(x) is the Dirac delta function and α is just a parameter whose importance

will be seen later. This superposition of charge densities is depicted pictorially in

Figure 2.1. The δ-function on site i does not contribute to its own potential, so the

δ-function point charges

Converges rapidly in real space because

distribution is locally charge neutral

Poisson equation can be solved in Fourier

space, giving a quickly converging Fourier

series for the potential due to this piece

Figure 2.1: The δ-function charge distribution is split into a superposition of a short-range
charge neutral term and a periodic term amenable to Fourier analysis

charge seen by the site is a superposition of δ-functions on all other sites. The charge

distribution giving rise to this potential seen by site i is then

ρ(r) =
∑

j,n

′

qjδ(r− rj)

=

[

∑

j,n

′

qj

(

δ (r− rj)−
(

α2

π

)3/2

e−α2|r−rj |2
)]

+
∑

j,n

qj

(

α2

π

)3/2

e−α2|r−rj |2

− qi

(

α2

π

)3/2

e−α2|r−ri|2

≡ ρscreened + ρfourier + ρself , (2.3)

where the prime denotes that site i is removed from the sum. This is shown pictorially

in Figure 2.2.

The sum of Gaussians includes site i to preserve the periodicity since this term will
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i i i i

Figure 2.2: No δ-function is on site i since the charge does not contribute to its own
potential. The charge-neutral term also excludes the charge on site i, but the charge is
included in the Gaussian term since the function must remain periodic for Fourier analysis.
This requires a correction term of an extra Gaussian.

be handled by a Fourier series. This requires an extra negative Gaussian on site i,

which gives rise to what is known as the self-interaction. The potential on site i can

be similarly decomposed into

φδ = φscreened + φfourier + φself , (2.4)

where each term is the solution to the Poisson equation for the corresponding charge

density term from Equation (2.3).

2.3 Energy

From the potential one can directly compute energies. Before going into the mathe-

matical details of finding φscreened, φfourier, and φself , we derive standard expressions

for the energy given the potential. Of course in the case of two point charges, the

energy is given by U = qφ, where φ is the potential due to the other charge. Equiva-

lently, and more generally, we can sum over both particles by writing U = 1
2

∑

qiφ(ri),

with the factor of one half needed to prevent double counting. Since the potential is

just the charge over the distance, this can be written as

U =
1

2

∑

i 6=j

qiqj
rij
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Moving from point charges to the continuum we naturally have

U =
1

2

∫ ∫

drdr′
ρ(r′)ρ(r)

|r′ − r|

=
1

2

∫

dr ρ(r)

(∫

dr′
ρ(r′)

|r′ − r|

)

=
1

2

∫

dr ρ(r)φ(r) (2.5)

For the case of point charges with ρ(r) =
∑

i qiδ(r− ri), the integral simply reduces

to our familiar expression

U =
1

2

∑

i

qiφδ(ri), (2.6)

where φδ(ri), the potential due to the point charges, can be exactly re-expressed as

the superposition of contributions due to different mathematically convenient charge

distributions as shown in Equation (2.4). Hence,

U =
1

2

∑

i

qiφfourier(ri) +
1

2

∑

i

qiφself (ri) +
1

2

∑

i

qiφscreened(ri) (2.7)

The total energy is obtained when the sums in Equation (2.7) extend over all periodic

charges, but the infinite system must have infinite energy. We really seek the energy

per unit cell, which is just found by restricting the sums to the unit cell. Note also

that in moving from Equation (2.5) to Equation (2.6) we simply treated the point

charges as δ-functions, but when we need the potential we split the charges up into

a superposition of terms via Equation (2.3). The important point here is that the

ρ(r) and ρ(r′) of Equation (2.5) are treated differently. One term is treated with the

straightforward δ-functions while the other utilizes the non-trivial superposition of

Equation (2.3).

2.4 Poisson Equation in Fourier Space

We already know how to solve the Poisson equation for point charges (δ-functions).

ρ(r) =
n
∑

i=1

qiδ(r− ri)⇒ φ(r) =
n
∑

i=1

qi
4π |r− ri|

When we have charge distributions of different functional forms, a Fourier represen-

tation of the Poisson equation is useful. To find this we start by finding the Fourier

series of φ(r) and ρ(r). The Poisson summation formula yields

φ(r) =
1

V

∑

k

φ̃(k)eik·r
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where k =
(

2π
L

)

l, l are the lattice vectors in Fourier space, and the Fourier compo-

nents, φ̃(k), are then given by φ̃(k) =
∫

V
drφ(r)e−ik·r. One can similarly find the

Fourier series for ρ(r),

ρ(r) =
1

V

∑

k

ρ̃(k)eik·r,

with ρ̃(k) =
∫

V
drρ(r)e−ik·r. Hence, starting with the Poisson equation in real space

we have,

∇2φ(r) = −4πρ(r)

⇒ ∇2

(

1

V

∑

k

φ̃(k)eik·r

)

= −4π

V

∑

k

ρ̃(k)eir·k

⇒ ∇
(

1

V

∑

k

φ̃(k)eik·rik

)

= −4π

V

∑

k

ρ̃(k)eir·k

⇒ −
∑

k

k · k
V

φ̃(k)eik·r = −4π

V

∑

k

ρ̃(k)eir·k

⇒ − 1

V

∑

k

k2φ̃(k)eik·r = −4π

V

∑

k

ρ̃(k)eir·k

Since this must hold for arbitrary ρ(r), and thus for arbitrary ˜ρ(k),

k2φ̃(k) = 4πρ̃(k). (2.8)

Note that in Fourier space, differential operators do not appear in the Poisson equa-

tion. In fact, it is trivial to deduce the k-space potential given the k-space charge

distribution. This provides a route to deducing the real-space potential of a periodic

charge distribution. One can expand the charge distribution as a Fourier series, de-

duce the k-space potential, then transform the potential back into real space via an

inverse Fourier transform.

2.5 Periodic Superposition of Gaussians

Suppose the real space charge distribution consists of a single point charge at the

origin, ρ1(r) = qδ(r). In Fourier space,

ρ̃1(k) =

∫

V

dr ρ1(r)e
−ik·r = q

∫

V

dr δ(r)e−ik·r = q

From Equation (2.8) we then have the k-space form of the potential due to a real-space

point charge.

φ̃(k) =
4πq

k2
= qg̃(k), (2.9)
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where g̃(k) = 4π
k2

is the Green’s function since it is the Fourier space solution to the

operator equation ∇2φ(r) = −4πδ(r). Now consider a collection of point charges,

ρ2(r) =
∑

i qiδ(r− ri). The k-space distribution is given by

ρ̃2(k) =

∫

V

dr
n
∑

i=1

qiδ(r− ri)e
−ik·r =

n
∑

i=1

qie
−ik·ri (2.10)

Plugging this k-space charge distribution into Equation (2.8) gives the k-space po-

tential due to a superposition of point charges.

φ̃2(k) =
4π

k2

n
∑

i=1

qie
−ik·ri = g̃(k)ρ̃2(k)

Finally, we want to find the potential due to a periodic superposition of Gaussians,

ρ3(r) =
n
∑

j=1

∑

n

qi

(

α2

π

)3/2

exp
(

−α2 |r− (rj + nL)|2
)

.

This could be tackled explicitly, but it is simpler to utilize the convolution theorem,

which states

f1(x) = f2(x) ⋆ f3(x) ≡
∫

dx′f2(x
′)f3(x− x′) ⇒ f̃1(k) = f̃2(k)f̃3(k)

In words, convolutions in real space are products in Fourier space. We can recognize

ρ3 as a sum of δ-functions convolved with Gaussians.

ρ3(r) =
∑

i

qiγ(r− ri) =

∫

dr′ γ(r′)
∑

i

qiδ(r− ri − r′) = γ(r) ⋆ ρ2(r),

where γ(r) is a Gaussian centered at zero along with its periodic images,

γ(r) =
∑

n

(

α2

π

)3/2

e−α2|r+Ln|2 .

Because ρ3(r) = γ(r) ⋆ ρ2(r), the convolution theorem implies ρ̃3(k) = γ̃(k)ρ̃2(k).

Application of Equation (2.8) gives

φ̃3(k) = g̃(k)ρ̃3(k) = g̃(k)γ̃(k)ρ̃2(k) (2.11)

We already have expressions for g̃(k) and ρ̃2(k), but it remains to find γ̃(k).

γ̃(k) =
∑

n

∫

V

dr

(

α2

π

)3/2

e−α2|r+Ln|2e−ir·k =

∫

all space

dr

(

α2

π

)3/2

e−α2|r|2e−ir·k

=

∫

all space

dr

(

α2

π

)3/2

e−(αr−
ik
2α)

2

e−k2/4α2

= e−k2/4α2

(2.12)
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Combining equations (2.10), (2.11), and (2.12) yields

φ̃1(k) =
4π

k2

n
∑

j=1

qje
−ik·rj exp

(

− k2

4α2

)

(2.13)

Now we Fourier transform this back into position space to find φ3(r).

φ3(r) =
1

V

∑

k 6=0

φ3(k)e
ik·r

=
1

V

∑

k 6=0

4π

k2

n
∑

j=1

qje
−ik·rjeik·r exp

(

− k2

4α2

)

=
1

V

∑

k 6=0

4π

k2

n
∑

j=1

qje
ik(r−rj) exp

(

− k2

4α2

)

(2.14)

This is the contribution to the electrostatic potential from the periodic Gaussian

charge distribution. It is expressed as a Fourier series in k, and due to the exponential

term it converges quickly provided α is sufficiently small. This potential allows one

to compute the Coulomb energy of the Fourier term via Equation (2.7), in which φ3

was referred to as φfourier.

Ufourier =
1

2

∑

k 6=0

n
∑

i,j=1

4πqiqj
V k2

eik·(ri−rj) exp

(

− k2

4α2

)

It is customary to take this one step further by recognizing the “structure factor”

from scattering theory, S(k) =
∑

i qie
ik·ri .

Ufourier =
1

2

∑

k 6=0

4π

k2
|S(k)|2 exp

(

− k2

4α2

)

(2.15)

This final step is not mere cosmetics. The double sum over n objects has been

replaced by the square modulus of a single sum, reducing the computational scaling

from O(N2) to O(N).

2.6 Correcting for the Self-interaction

To find the self-interaction part of Equation (2.7), we must compute the potential

at ri due to the Gaussian charge distribution, qi

(

α2

π

)3/2

e−α2|r−ri|2 . We will place ri

at the origin without loss of generality. It may seem that the potential due to this

charge distribution has already been found in Equation (2.14), but we are now dealing

with an isolated Gaussian. The Fourier series expression is only helpful in the case of
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periodically replicated Gaussians. To deal with the isolated Gaussian, we solve the

Poisson equation in position space. Using spherical symmetry,

∇2φ = −1

r

∂2(rφ(r))

∂r2

⇒ 1

r

∂2(rφ(r))

∂r2
= −4πρ(r) = −4πqi

(

α2

π

)3/2

e−α2r2

⇒ ∂(rφ(r))

∂r
= −

∫ r

∞
dr 4πrqi

(

α2

π

)3/2

e−α2r2 = −
∫ r

∞
d(r2)2πqi

(

α2

π

)3/2

e−α2r2

=
2π

α2
qi

(

α2

π

)3/2

e−α2r2

Integrating each side again gives

rφ(r) =

∫ r

0

dr
2π

α2
qi

(

α2

π

)3/2

e−α2r2 =

∫ r

0

dr
2α√
π
qie

−α2r2

=

∫ αr

0

du
2√
π
qie

−u2

= qierf(αr)

where erf(x) ≡
∫ r

0
dx 2√

π
e−x2

. So

φGaussian(r) =
qierf(αr)

r
(2.16)

We evaluate this potential at the origin via a limiting procedure.

φGaussian(r = 0) = lim
r→0

qierf(αr)

r
= lim

r→0

qi
∫ αr

0
dx 2√

π
e−x2

r
= lim

r→0

qi
2√
π
e−r2α

1
=

2qiα√
π

the second to last step being a combination of L’Hopitâl’s Rule and the fundamental

theorem of calculus. We are now equipped to evaluate the extra self-interaction term

from Equation (2.7). Hence,

Uself =
1

2

n
∑

i=1

qiφself (ri) = −
1

2

n
∑

i=1

qi

(

2qiα√
π

)

= −
(

n
∑

i=1

q2i

)

α√
π
, (2.17)

where the minus sign arises from the fact that the point charge and the Gaussian

charge have opposite signs as is clear from Figure 2.2.
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2.7 Screened Term

We already know the potential due to a point charge: φ(r) = qi
r

and now from

Equation (2.16) we know the potential due to a Gaussian charge. So the potential

due to a superposition is just

φscreened(r) =
qi
r
− qi

r
erf(αr) =

qi
r
erfc(αr)

where erfc(x) ≡ 1− erf(x). Hence the energy for this charge-neutral term is

Uscreened =
1

2

∑

i 6=j

qiqjerfc(αrij)

rij
, (2.18)

where the sum over i 6= j in principle means the sum over the periodic images as well

as the simulation cell. In practice a real-space cutoff distance is imposed since the

screened potential will converge rapidly.

Combining equations (2.15), (2.17), and (2.18) gives the total energy for our orig-

inal system of point charges:

U =
1

2V

∑

k 6=0

4π

k2
|S(k)|2 e−k2/4α2 − α√

π

n
∑

i=1

q2i +
1

2

∑

i 6=j

qiqjerfc(αrij)

rij
(2.19)

2.8 Ewald Summation with Gaussian Charges

The progression from Equation (2.5) to (2.6) hinged upon the system consisting only

of point charges. Suppose instead that charges at positions Ri are Gaussian with

ρ(r) =
∑

i Qi

(

η2

π

)3/2

e−η2|r−Ri|2 . Then Equation (2.5) becomes

U =
1

2

N
∑

i=1

∫

dr Qi

(

η2

π

)3/2

e−η2|r−Ri|2φ(r), (2.20)
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where φ(r) describes the potential due to the periodic system of Gaussian charges.

We already have computed this potential as a series over k in Equation (2.14), so

U =
1

2V

∑

k 6=0

N
∑

i,j

4πQiQje
−k2/4η2

k2

(

η2

π

)3/2 ∫

dr eik·(r−Rj)e−η2|r−Ri|2

=
1

2V

∑

k 6=0

N
∑

i,j

4πQiQje
−k2/4η2

k2

(

η2

π

)3/2 ∫

dr eik·(r−Ri)eik·(Ri−Rj)e−η2|r−Ri|2

=
1

2V

∑

k 6=0

N
∑

i,j

4πQiQje
−k2/4η2

k2

(

η2

π

)3/2

eik·(Ri−Rj)

∫

dreik·(r−Ri)e−η2|r−Ri|2

=
1

2V

∑

k 6=0

N
∑

i,j

4πQiQje
−k2/4η2

k2

(

η2

π

)3/2

eik·(Ri−Rj)

∫

dr e−(η(r−Rj)− ik
2η )

2

e
− k2

4η2

=
1

2V

∑

k 6=0

N
∑

i,j

4πQiQje
−k2/4η2

k2
e
− k2

4η2

(

η2

π

)3/2

eik·(Ri−Rj)

∫

dr e−η2r2

=
1

2V

∑

k 6=0

4π

k2
|S(k)|2e−k2/2η2 , (2.21)

As before S(k) =
∑

i Qi exp (ik ·Ri) is the structure factor. This is very similar

to the Fourier series term in the point charge Ewald sum but now the parameter η

is thought of as a real spread in the charge distribution (well the reciprocal of the

spread) whereas α before was an arbitrary parameter for mathematical convenience.

One would choose α such that it is sufficiently small for the Fourier term to converge

quickly but sufficiently large for the screened term to also converge. In contrast,

setting η directly controls the way we choose to represent the real charge distribution.

It determines the physical extent of the Gaussians that represent charge on the metal

sites.

If η2/2 > α2 then the sum of Equation (2.21) will converge slower than the re-

ciprocal space sum of Equation (2.19). Assuming these two sums share the same

k-space cut-off, the truncation error of the Gaussian system will exceed the error of

the associated point charge system. This problem, which is particularly important at

short-range, can be resolved by shifting some of the Gaussian system’s energy calcu-

lation into real space. Unfortunately, the method for shifting this energy calculation

into real space is not clear in this formulation of the problem. As seen in Chapter

3, the Ewald sum calculation of de Leeuw et al. makes this alteration transparent.

So while the energy of Equation (2.21) is technically correct, it is not computation-

ally desirable. The calculation has been provided here for future comparison, not for

actual use.
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One could also use the Fourier representation of the Gaussian potential to derive

the energy of interaction between a point charge and the Gaussian system. This

energy would also be expressed entirely in Fourier space and would suffer from the

same shortcomings as Equation (2.21). Rather than derive another useless expression,

we proceed directly to the de Leeuw method.
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Chapter 3

Formal Ewald Summation

While Equation (2.19) is indeed the commonly used electrostatic energy of the Ewald

sum, the derivation and justification of the previous chapter is sloppy. The Bertaut

approach completely ignores whether or not the original sum of Equation (2.1) is

even convergent. The sum, as it turns out, is only conditionally convergent [15], and

as formally shown in Chapter 3 of Rudin’s Principles of Mathematical Analysis, an

infinite conditionally convergent series is ill-defined. [44] For example, consider the

infinite alternating harmonic series,

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

Regrouping the terms of this series could yield

S1 =

(

1− 1

2

)

+

(

1

3
− 1

4

)

+ . . . =
∞
∑

k=1

1

2k (2k − 1)
,

but an alternative regrouping results in

S2 =

(

1− 1

2
− 1

4

)

+

(

1

3
− 1

6
− 1

8

)

+ . . . =
∞
∑

k=1

1

4k (2k − 1)
=

S1

2
.

This simple example conveys the diabolical nature of conditionally convergent series.

Unlike their convergent counterparts, the order of summation matters. In fact the

Riemann series theorem states that by merely altering the order of summation, the

series can be made to sum to any arbitrary value. [44] This is deeply troubling for a

physical sum, which clearly must converge to a well-defined value. We therefore need

to select which ordering we mean when we write down a sum. A normal gut reaction

to S2 is that it is the wrong ordering, but one must formalize what is so wrong about

it. The problem is that a finite truncation of S2 contains twice as many negative as

positive terms, a clear difference from a finite truncation of S as originally written.

25



For a sum with physical meaning we regularize the sum by choosing the ordering of

the infinite sum whose finite truncations correspond to physically realistic truncations

of the system.

To specify the order of summation of our periodically replicated simulation cell

we must recall what the sum given by Equation (2.1) physically represents. It arises

from an infinitely replicated crystal, but an infinitely replicated crystal is only an

approximation for a very large crystal. Hence we expect the physical sum must be

truncated at some real space cut-off. Only charges closer than the cut-off radius are

part of the physical crystal. To order the terms of the sum appropriately, one must

sum over spherical shells of increasing radii. That way a finite truncation of the sum

looks like a large spherical crystal.

Ordering of the sum is only one of two major problems presented by the conditional

convergence of the sum. Standard algebraic tricks (differentiating under an integral,

switching the order of sums and integrals, etc.) are valid if and only if a series

is uniformly convergent. Since these methods are desirable for certain calculations,

one must introduce a convergence factor, making the series formally uniform. One

can then obtain well-defined limits of the uniform series as the convergence factor

vanishes. The method is illustrated below closely following the work of de Leeuw et

al. [15]

3.1 Convergence Factors

Consider a conditionally convergent series,
∑∞

n=1 cn. Rather than study this series

directly, we study an extension of the series as a function of the parameter s.

L(s) =
∞
∑

n=1

cnfn(s), (3.1)

where {fn(s)} is a monotonically decreasing sequence of continuous functions on the

domain s ≥ 0 with range [0, 1] and fn(0) = 1 ∀ n. In other words, we have the

restrictions

(i) fn(s) continuous for s ≥ 0

(ii) fn(0) = 1 ∀ n

(iii) fn+1(s) ≤ fn(s) ∀ s ≥ 0, ∀ n (monotonically decreasing sequence for any given

s)
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(iv) 0 ≤ fn(s) ≤ 1 ∀ n, ∀ s ≥ 0

As de Leeuw et al. show, L(s) is uniformly convergent on s ≥ 0. This seems para-

doxical since setting s = 0 returns the original conditionally convergent series. The

catch is that constraint (iii) on f selects an ordering of the terms of the series. It is

not possible to reorder terms while still satisfying (iii) and this constraint carries over

smoothly in the s→ 0 limit. Hence

∞
∑

n=1

cn = lim
s→0

L(s), (3.2)

where the ordering of cn on the left hand side is such that fn+1(s) ≤ fn(s).

3.2 Point Charge Coulomb Energy

The conditionally convergent Coulomb energy per cell of an infinite point charge

system is given by

U =
1

2

∑

n

′

(

∑

i,j

qiqj
|rij + n|

)

,

where n sums over the lattice vectors in multiples of the box length (i.e. n =

(ka, lb,mc) with a, b, c ∈ Z). Unlike before, the unit cell is not assumed to be cubic,

so n is defined slightly differently than it was in Chapter 2. The prime on the sum

denotes that the n = 0, i = j term is excluded as that term corresponds to a point

charge interacting with itself. We enforce a spherical order of summation by defining

U = lim
s→0

U(s) with U(s) =
1

2

∑

n

′

(

∑

ij

qiqje
−s|n|2

|rij + n|

)

, (3.3)

which orders the nearest copies first such that e−s|n|2 ≥ e−s|m|2 for |n| ≤ |m| in accor-

dance with (iii). As U(s) is uniformly convergent on s ≥ 0, the order of summation

can now be interchanged. Hence,

U(s) =
1

2

∑

ij

qiqj
∑

n

′ e−s|n|2

|rij + n|

The |rij + n|−1 term must be cleverly split into short-range and long-range contri-

butions. This is achieved by representing |rij + n|−1 as an integral over a dummy

variable via the identity

1

r
=

1√
π

∫ ∞

0

dt t−1/2 exp
(

−r2t
)

. (3.4)
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Proof. Apply the u−substitution u2 = r2t. Hence 2u du = r2dt. So

1√
π

∫ ∞

0

dt t−1/2 exp
(

−r2t
)

=
1√
π

∫ ∞

0

du
2re−u2

u

ur2
=

2√
π

∫ ∞

0

du

r
e−u2

=
2√
π

√
π

2

1

r
= r−1.

Application of the identity gives

|rij + n|−1 =
1√
π

∫ ∞

0

dt t−1/2 exp
(

−t |rij + n|2
)

and

U(s) =
1

2

∑

i,j

qiqj
∑

n

′ 1√
π

∫ ∞

0

dt t−1/2 exp
(

−s |n|2 − t |rij + n|2
)

. (3.5)

The integral over dummy variable tmay be split up into two parts, one with t large and

one with t small corresponding respectively to short-range and long-range contribu-

tions of r−1. For clarity in referring to these split up integrals, we define V [a,b] (s,n, rij)

as follows.

V [a,b] (s,n, rij) =
1√
π

∫ b

a

dt t−1/2 exp
(

−s |n|2 − t |rij + n|2
)

(3.6)

Hence U(s) is decomposed into four different terms.

U(s) =
1

2

∑

i,j

qiqj
∑

n

′

V [0,∞) (s,n, rij)

=
1

2

∑

i,j

qiqj
∑

n

′

V [α2,∞) (s,n, rij) +
1

2

∑

i,j

qiqj
∑

n

′

V [0,α2] (s,n, rij)

=
1

2

∑

i,j

qiqj
∑

n

′

V [α2,∞) (s,n, rij) +
1

2

∑

i,j

qiqj
∑

n 6=0

V [0,α2] (s,n, rij)

+
1

2

∑

i,j

qiqjV
[0,α2] (s, 0, rij)−

1

2

∑

i

q2i V
[0,α2] (s, 0, 0)

≡ U1(s) + U2(s) + U3(s)− U4(s) (3.7)
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3.2.1 U1(s)

A straightforward u-substitution with t = u2 |rij + n|−2 allows U1(s) to be directly

computed.

U1(s) =
1

2

∑

i,j

qiqj
∑

n

′

V [α2,∞) (s,n, rij)

=
1

2

∑

i,j

qiqj
∑

n

′ 1√
π

∫ ∞

α2

dt t−1/2 exp
(

−s |n|2 − t |rij + n|2
)

=
1

2

∑

i,j

qiqj
∑

n

′ e−s|n|2

√
π

∫ ∞

α2

dt
exp

(

−t |rij + n|2
)

√
t

=
1

2

∑

i,j

qiqj
∑

n

′ e−s|n|2

√
π

∫ ∞

α|rij+n|
du

exp (−u2) 2u |rij + n|
|rij + n|2 u

=
1

2

∑

i,j

qiqj
∑

n

′ 2e−s|n|2

|rij + n| √π

∫ ∞

α|rij+n|
du e−u2

=
1

2

∑

i,j

qiqj
∑

n

′ e−s|n|2erfc (α |rij + n|)
|rij + n| , (3.8)

The s-dependence of U1(s) is particularly well-behaved, so the s → 0 limit will be

easy to take without concern about divergences (stay tuned). The sum is traditionally

treated with a real-space cut-off under the minimum image convention. We will write

lim
s→0

U1(s) =
1

2

∑

i 6=j

qiqj
erfc (α |rij|)
|rij|

, (3.9)

where it is understood that |rij| is the distance to the minimum image and only terms

with |rij| < rc are included in the sum.

3.2.2 U2(s)

U2(s) is a long-range energy due to k 6= 0 terms. As initially defined,

U2(s) =
1

2
√
π

∑

i,j

qiqj
∑

n 6=0

∫ α2

0

dt t−1/2 exp
(

−s |n|2 − t |rij + n|2
)

(3.10)

For large t we were able to neglect distant n terms since sufficiently large t implies

exp
(

−t |rij + n|2
)

<< exp
(

−t |rij|2
)

∀ n 6= 0. For small t, exp
(

−t |rij + n|2
)

does

not decay rapidly, so many n terms contribute to the sum. The sum over n converges

much faster if the (negative) coefficient of n is large, but this coefficient is t, which is

small over [0, α2]. The Jacobi imaginary transformation converts an infinite sum over
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an exponential in t to one over an exponential in t−1, which will allow much more

rapid convergence of the sum than would be provided from a more straightforward

attack. First, we state and prove the Jacobi imaginary transformation.

Claim (Jacobi’s Imaginary Transformation):

∞
∑

k=−∞
exp

(

− (x+ ka)2 t
)

=
1

a

(π

t

)1/2
∞
∑

k=−∞
exp

(

−π2k2

a2t
+

i2πkx

a

)

. (3.11)

Proof. Let the left hand side be f(x) =
∑∞

k=−∞ exp
(

− (x+ ka)2 t
)

. Because the sum

is infinite, it follows that f(x + a) = f(x). Since f is periodic in x with period a, it

can be expanded in a Fourier series,

∞
∑

k=−∞
exp

(

− (x+ ka)2 t
)

=
∞
∑

k=−∞
ck exp

(

2πikx

a

)

Projecting out the lth term of the sum gives

∫ a

0

dx exp

(

−2πilx

a

) ∞
∑

k=−∞
exp

(

− (x+ ka)2 t
)

=

∫ a

0

dx cl

⇒
∞
∑

k=−∞

∫ a

0

dx exp

(

− (x+ ka)2 t− 2πilx

a

)

= acl

⇒
∞
∑

k=∞

∫ (k+1)a

ka

dx exp

(

−x2t− 2πilx

a

)

= acl

⇒
∞
∑

k=−∞

∫ (k+1)a

ka

dx exp

(

−
(

x
√
t+

πil

a
√
t

)2
)

exp

(

−π2l2

a2t

)

= acl

⇒
∫ ∞

−∞
dx exp

(

−
(

x
√
t+

πil

a
√
t

)2
)

exp

(

−π2l2

a2t

)

= acl

⇒
√
π√
t
exp

(

−π2l2

a2t

)

= acl

Plugging this expression for cl into the Fourier Series yields

∞
∑

k=−∞
exp

(

− (x+ ka)2 t
)

=
∞
∑

k=−∞
ck exp

(

2πikx

a

)

=
1

a

(π

t

)1/2
∞
∑

k=−∞
exp

(

−π2k2

a2t
+

i2πkx

a

)

.
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Before this result can be applied to Equation (3.10), we perform some cosmetic algebra

on the exponential of the integrand. Observe that

−s |n|2 − t |rij + n|2 = −t |rij|2 − (s+ t) |n|2 − 2tn · rij

= −t(t+ s)

t+ s
|rij|2 − 2tn · rij − (s+ t) |n|2

=

(

− t2

t+ s
− st

t+ s

)

|rij|2 − 2tn · rij − (s+ t) |n|2

= −(s+ t)

∣

∣

∣

∣

n+
trij
t+ s

∣

∣

∣

∣

2

− st |rij|2
t+ s

(3.12)

so

U2(s) =
1

2
√
π

∑

i,j

qiqj
∑

n 6=0

∫ α2

0

dt t−1/2 exp

(

−st |rij|2
s+ t

)

exp

(

− (s+ t)

∣

∣

∣

∣

n+
trij
t+ s

∣

∣

∣

∣

2
)

(3.13)

Application of the Jacobi imaginary transformation to the second exponential of the

integrand yields

U2(s) =
1

2abc
√
π

∑

i,j

qiqj
∑

(k,l,m) 6=(0,0,0)

∫ α2

0

dt t−1/2 exp

(

−st |rij|2
s+ t

)

(

π

s+ t

)3/2

× exp

[

− π2

s+ t

(

k2

a2
+

l2

b2
+

m2

c2

)]

exp

[

i2πt

t+ s

(

xijk

a
+

yijl

b
+

zijm

c

)]

,

Recall that n = (ka, lb,mc) in this chapter. Defining the reciprocal lattice vectors,

k = 2π
(

k
a
, l
b
, m

c

)

allows this to be rewritten as

U2(s) =
1

2abc
√
π

∑

i,j

qiqj
∑

k 6=0

∫ α2

0

dt t−1/2

(

π

s+ t

)3/2

exp

(

−st |rij|2
s+ t

)

× exp

(

− |k|2
4(s+ t)

+
itk · rij
t+ s

)

(3.14)

We must now manipulate this expression into an expansion asymptotic in s such that

the s→ 0 limit can be found. Let

v2 =
t

s(t+ s)

∣

∣

∣

∣

k

2
+ isrij

∣

∣

∣

∣

2

=
t

s(t+ s)

(

|k|2
4

+
ik · rijs

2
− s2 |rij|2

)

⇒ 2vdv =

∣

∣

∣

∣

k

2
+ isrij

∣

∣

∣

∣

2(
s(t+ s)− st

s2(t+ s)2

)

dt =
2t1/2(t+ s)3/2

s1/2
∣

∣

k

2
+ isrij

∣

∣

dv
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Observe then that

exp
(

v2
)

= exp

(

−st |rij|2
t+ s

+
ik · rijt
t+ s

+
t |k|2

4s(t+ s)

)

= exp

(

|k|2
4s

)

exp

(

−st |rij|2
t+ s

+
ik · rijt
t+ s

− |k|2
4(t+ s)

)

Inserting this relationship into Equation (3.14) gives

U2(s) =
π

2abc

∑

i,j

qiqj
∑

k 6=0

∫ α2

0

dt t−1/2

(

π

s+ t

)3/2

exp

(

−|k|
2

4s

)

exp
(

v2
)

=
π

2abc

∑

i,j

qiqj
∑

k 6=0

∫ γ

0

2dv

s1/2
∣

∣

k

2
+ isrij

∣

∣

exp

(

−|k|
2

4s

)

exp
(

v2
)

=
π

abc

∑

i,j

qiqj
∑

k 6=0

exp
(

− |k|2
4s

)

s1/2
∣

∣

k

2
+ isrij

∣

∣

∫ γ

0

dv exp
(

v2
)

, (3.15)

where γ =
(

α
∣

∣

k

2
+ isrij

∣

∣

)

/
√

s (α2 + s). An asymptotic series for the above integral

is given in equation (3.18) of de Leeuw et al. [15]

∫ ω/
√
s

0

dv exp
(

v2
)

∼ s1/2

2ω
eω

2/s
[

1 +
s

2ω2
+O

(

s2
)

]

,

where ω =
√
sγ relates de Leeuw’s parameter ω to my parameter γ. Inserting this

asymptotic expansion into Equation (3.15) and expanding the expression out to ne-
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glect terms first order or higher in s, one finds

U2(s) ∼
π

abc

∑

i,j,k 6=0

qiqj exp
(

− |k|2
4s

)

∣

∣

k

2
+ isrij

∣

∣ 2ω
exp

(

ω2

s

)

[

1 +
s

2ω2
+O

(

s2
)

]

∼ π

2abc

∑

i,j,k 6=0

qiqj
∣

∣

k

2
+ isrij

∣

∣ω
exp

(

α2
∣

∣

k

2
+ isrij

∣

∣

2

(α2 + s) s
− |k|

2

4s

)

[

1 +
s

2ω2
+O

(

s2
)

]

∼ π

2abc

∑

i,j,k 6=0

qiqj
∣

∣

k

2
+ isrij

∣

∣ω
exp

(

α2 |k|2
4(α2 + s)s

+
α2ik · rij
α2 + s

− α2s |rij|2
α2 + s

− |k|
2

4s

)

×
[

1 +
s

2ω2
+O

(

s2
)

]

∼ π

2abc

∑

i,j,k 6=0

qiqj
∣

∣

k

2
+ isrij

∣

∣ω
exp

(

|k|2
4s

(

α2

α2 + s
− 1

)

+ ik · rij +O(s)
)

×
[

1 +
s

2ω2
+O

(

s2
)

]

∼ π

2abc

∑

i,j,k 6=0

qiqj
∣

∣

k

2
+ isrij

∣

∣ω
exp

(

|k|2
4s

(

− s

α2 + s

)

+ ik · rij +O(s)
)

×
[

1 +
s

2ω2
+O

(

s2
)

]

∼ π

2abc

∑

i,j,k 6=0

qiqj
∣

∣

k

2
+ isrij

∣

∣ω
exp

(

− |k|2
4 (α2 + s)

+ ik · rij +O(s)
)

[

1 +
s

2ω2
+O

(

s2
)

]

(3.16)

Noting that

lim
s→0

ω = lim
s→0

α
∣

∣

k

2
+ isrij

∣

∣

√
α2 + s

=
|k|
2
,

we can easily take the limit as s→ 0 of Equation (3.16).

lim
s→0

U2(s) =
π

2abc

∑

i,j

qiqj
∑

k 6=0

4

|k|2
exp

(

−|k|
2

4α2
+ ik · rij

)

(3.17)

Recognizing
∑

i qie
ik·r as the structure factor, S(k), and abc as the volume, V , we

have

lim
s→0

U2(s) =
1

2V

∑

k 6=0

4π

k2
exp

(

− k2

4α2

)

|S (k)|2 . (3.18)

3.2.3 U3(s)

To compute the n = 0 contribution, we start by treating U3(s) the same way as U2(s).

That is to say the Jacobi imaginary transformation is applied then n = 0⇒ k = 0 is
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inserted into Equation (3.14) yielding

U3(s) =
π

2abc

∑

i,j

qiqj

∫ α2

0

dt t−1/2(t+ s)−3/2 exp

(

−st |rij|2
s+ t

)

(3.19)

Let u = t
s+t
⇒ du = s

(s+t)2
dt. So

U3(s) =
π

2abc

∑

i,j

qiqj

∫ α2/(s+α2)

0

du
(s+ t)2

s
t−1/2(t+ s)−3/2 exp

(

−st |rij|2
s+ t

)

=
π

2abc

∑

i,j

qiqj

∫ α2/(s+α2)

0

du
(s+ t)1/2

s t1/2
exp

(

−su |rij|2
)

=
π

2abcs

∑

i,j

qiqj

∫ α2/(s+α2)

0

du u−1/2 exp
(

−su |rij|2
)

=
π

2abcs

∑

i,j

qiqj

∫ α2/(s+α2)

0

du√
u

[

1− su |rij|2 +
s2u2 |rij|4

2
− . . .

]

=
π

2abcs

∑

i,j

qiqj

∫ α2/(s+α2)

0

du

[

1√
u
− s
√
u |rij|2 +

s2u3/2 |rij|4
2

− . . .

]

=
π

2abcs

[

2u1/2 − 2

3
su3/2 |rij|2 +O

(

s2
)

]∣

∣

∣

∣

α2/(s+α2)

0

=
1

2abc

∑

i,j

qiqj

[

2πα

s
√
s+ α2

− 2π

3
|rij|2

α3

(s+ α2)3/2
+O(s)

]

(3.20)

This expression reveals the fundamental divergence of the s → 0 limit, which is

glossed over by handwavy derivations of Ewald summation. However, in a neutral

system,
∑

i qi = 0, so for finite s this first term will exactly vanish. The implication is

that the sum can only be regularized if the unit cell is neutral. This was long believed

to be the case, but an alternate view of the k = 0 term has revealed that non-neutral

systems can indeed by handled in a nearly identical manner. [28] Hence

U3(s) = −
π

3V

∑

i,j

qiqj

[

|rij|2
α3

(s+ α2)3/2
+O(s)

]

and

lim
s→0

U3(s) = −
π

3V

∑

i,j

qiqj |rij|2 . (3.21)

This last term, the surface term, is often related to the dipole moment of the primitive

cell [56]. Actually, the term should be associated with the itinerant dipole moment

[9] as made clear by the recent work of Herce et al. [28] The contribution of this
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surface term to most thermodynamic quantities can be shown to vanish if the infinitely

replicated system is embedded in an ǫ = ∞ dielectric. [35] This is the so called tin

foil boundary condition, which yields the simple Bertaut expression. The tin foil

boundary condition is commonly employed, though Smith has warned that a virial

term of the asymptotic calculation does not vanish in the ǫ→∞ limit. [57]

3.2.4 U4(s)

The energy U4(s) corresponds to the self interaction energy with rij = 0, n = 0. As

defined,

U4(s) =
1

2

∑

i

q2i V
[0,α2] (s, 0, 0)

=
1

2
√
π

∑

i

q2i

∫ α2

0

dt t−1/2

=
∑

i

q2i
t1/2√
π

∣

∣

∣

∣

∣

α2

0

=
α√
π

∑

i

q2i (3.22)

since the exponential of V [0,α2](s,n, rij) vanishes when n = rij = 0.

3.2.5 Bringing It All Together

Recombining the energy terms and taking the s→ 0 limit gives

lim
s→0

U(s) = lim
s→0

U1(s) + lim
s→0

U2(s) + lim
s→0

U3(s)− lim
s→0

U4(s)

=
1

2

∑

i 6=j

qiqj
erfc (α |rij|)
|rij|

+
1

2V

∑

k 6=0

4πe−k2/4α2

k2
|S (k)|2

− π

3V

∑

i,j

qiqj |rij|2 −
α√
π

∑

i

q2i (3.23)

This is the traditional Ewald sum energy we found previously with the exception

of the additional surface term, which can be neglected for the tin foil boundary

condition. This derivation places the Ewald summation procedure on rigorous, firm

ground, while also forming the basis for extensions beyond point charges.

3.3 Gaussian Charge Coulomb Energy

The de Leeuw et al. derivation of Ewald summation is particularly amenable to com-

puting the energies between Gaussian charges. This was shown by Reed, Lanning,
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and Madden in a slab geometry. [40] It can be extended to periodic replication in

all three dimensions in the same way. In doing so we expose an error in the energy

given by Reed et al. The correction to their slab calculation is discussed at length in

Appendix B.

The pairwise energy between Gaussians is

Upair =
η6

2π3

∫

R3

dr′
∫

R3

dr′′
Qi exp

[

−η2 |r′ − ri|2
]

Qj exp
[

−η2 |r′′ − rj|2
]

|r′′ − r′ + rij|
, (3.24)

where η6/π3 is the product of the two Gaussian normalization factors and the factor of

1/2 prevents double counting. As in the case of the point charges, summing an infinite

periodic system is conditionally convergent. The same exp
(

−s |n|2
)

convergence

factor can be applied to define U(s), which is then uniform on s ≥ 0.

U(s) =
η6

2π3

∑

i,j,n

∫

R3

dr′
∫

R3

dr′′
QiQj exp

(

−η2
(

|r′ − ri|2 + |r′′ − rj|2
))

exp
(

−s |n|2
)

|rij + r′′ − r′ + n| .

(3.25)

Notably there is no prime on the sums as the charge density centered on site i interacts

with itself. As in the point charge problem, we begin by applying Equation (3.4) in

order to write

|rij + r′′ − r′ + n|−1
=

1√
π

∫ ∞

0

dt t−1/2 exp
(

−t |rij + r′′ − r′ + n|2
)

=
1√
π

∫ ∞

0

dt t−1/2 exp
[

−t (xij + x′′ − x′ + ka)
2
]

× exp
[

−t (yij + y′′ − y′ + lb)
2
]

exp
[

−t (zij + z′′ − z′ +mc)
2
]

(3.26)

Additionally we make use of the following identity to write the Gaussian densities as

integrals over dummy variables. Claim:

exp
(

− |r|2 η2
)

= (2π)−3 π
3/2

η3

∫ ∞

−∞
exp

(

−|v|
2

4η2
+ iv · r

)

dv. (3.27)
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Proof. We start with the right hand side and proceed by completing the square.

π3/2

(2πη)3

∫ ∞

−∞
dv exp

(

−|v|
2

4η2
+ iv · r

)

=
π3/2

(2πη)3

∫ ∞

−∞
dv exp

[

−
(

v

2η
− irη

)2

− |r|2 η2
]

=
π3/2

(2πη)3
exp

(

− |r|2 η2
)

∫ ∞

−∞
dv′ exp

(

−|v
′|2
2η

)

=
π3/2

(2πη)3
exp

(

− |r|2 η2
)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dv′′xdv

′′
ydv

′′
z (2η)

3 exp
(

− |v′′|2
)

=
π3/2

(2πη)3
exp

(

− |r|2 η2
)

(2η)3
(√

π
)3

= exp
(

− |r|2 η2
)

So applying equations (3.26) and (3.27) to (3.25),

U(s) =
η6

π2
√
π

π3

(2π)6 η6

∫ ∞

0

dt

∫

R3

dr′
∫

R3

dr′′
∫

R3

dv

∫

R3

dw t−1/2
∑

i,j

∞
∑

k,l,m=−∞
QiQj

× exp
(

−s |n|2
)

exp
[

−t (xij + x′′ − x′ + ka)
2 − t (yij + y′′ − y′ + lb)

2
]

× exp

[

−t (zij + z′′ − z′ +mc)
2 − |v|

2

4η2
+ iv · r′ − |w|

2

4η2
+ iw · r′′

]

(3.28)

Here is where things get tricky. If we were to naively set s→ 0 here we could follow

the route of Reed et al. We first follow this path and rederive a result very similar

to that of Reed et al. In Appendix A the convergence factor calculation is handled

in gory detail. Ultimately the naive approach is valid because the problem can be

reduced to integrals which have already been carefully evaluated in the point charge

problem.

3.4 Naive s = 0 Approach

If s were nonzero, then the exp
(

−s |n|2
)

term of Equation (3.28) would prevent the

straightforward application of the Jacobi imaginary transformation since the periodic

terms would be of the form

∞
∑

k=−∞
exp

[

−t (x+ ka)2 − sk2
]

.
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With s = 0, these infinite sums can easily be directly transformed via Equation (3.11).

U =
1

27π5abc

∫ ∞

0

dt

∫

R3

dv

∫

R3

dw

∫

R3

dr′
∫

R3

dr′′ t−2
∑

i,j

∞
∑

k,l,m=−∞
QiQj exp

[

−|v|
2 + |w|2
4η2

]

× exp

[

−π2k2

a2t
+

i2πkxij

a

]

exp

[

−π2l2

b2t
+

i2πlyij
b

]

exp

[

−π2m2

c2t
+

i2πmzij
c

]

× exp

[

i

(

2πk

a
+ wx

)

x′′
]

exp

[

i

(

2πl

b
+ wy

)

y′′
]

exp

[

i

(

2πm

c
+ wz

)

z′′
]

× exp

[

−i
(

2πk

a
− vx

)

x′
]

exp

[

−i
(

2πl

b
− vy

)

y′
]

exp

[

−i
(

2πm

c
− vz

)

z′
]

(3.29)

The integrals over r′ and r′′ reduce to three dimensional δ-functions due to the com-

pleteness of the Fourier basis.

Claim:

(2π)−1

∫

dx exp [i (k − k′) x] = δ (k − k′) (3.30)

Proof. Let F {f(k)} denote the Fourier transform.

F {δ (k − k′)} =
∫ ∞

−∞
dk eikxδ(k − k′) = eik

′x

⇒F−1
{

eik
′x
}

= δ (k − k′)

⇒ 1

2π

∫ ∞

−∞
dx eik

′xe−ikx = δ (k − k′)

⇒ 1

2π

∫ ∞

−∞
dx ei(k

′−k)x = δ (k − k′)

Converting from n to k and utilizing the δ-functions allows Equation (3.29) to be

written compactly as

U =
π

2abc

∫ ∞

0

dt

∫

R3

dv

∫

R3

dw t−2
∑

i,j

QiQj

∑

k

exp

[

−|v|
2 + |w|2
4η2

]

× exp

[

−|k|
2

4t
+ ik · rij

]

δ (v − k) δ (w + k)

=
π

2abc

∫ ∞

0

dt t−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

2η2

]

exp

[

−|k|
2

4t
+ ik · rij

]

=
π

2abc

∫ ∞

0

dt t−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

4

(

1

t
+

2

η2

)

+ ik · rij
]

(3.31)
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Now consider the substitution

t′ =
tη2

η2 + 2t
⇒ dt′ =

η2(η2 + 2t)− 2tη2

(η2 + 2t)2
dt =

η4

(η2 + 2t)2
dt =

(

t′

t

)2

dt

So t′−2dt′ = t−2dt. The bounds of the new integral over t′ are given by

lim
t→0

t′ = lim
t→0

(

tη2

η2 + 2t

)

= 0

and

lim
t→∞

t′ = lim
t→∞

(

tη2

η2 + 2t

)

=
η2

2

This final limit is mistakenly set to infinity in the Reed, Lanning, and Madden paper.

The correct substitution yields

U =
π

2abc

∫ η2/2

0

dt′ t′−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

4t′
+ ik · rij

]

(3.32)

This integral is of the same form as a naive s = 0 substitution into the quantity

U2(s) + U3(s) from equations (3.14) and (3.19) if the α2 from before is replaced by

η2/2. I describe the substitution as naive because the convergence factor will be

slightly different and it is not immediately obvious that the results will carry over.

Appendix A performs the detailed convergence factor calculation, confirming that the

s→ 0 limit of equations (3.17) and (3.22) will remain valid here. On a handwavy level,

the naive treatment is sufficient because the ordering of the Gaussians is identical to

the ordering of the point charge system.

U =
1

2V

∑

k 6=0

4π

k2
exp

(

− k2

2η2

)

|S (k)|2 − π

3V

∑

i,j

QiQj |rij|2 (3.33)

In a system with tin foil boundary conditions, this second term vanishes and the

energy is seen to be exactly the same as that found previously in Equation (2.21).

Unfortunately, if η2

2
> α2 then the k-space sum will converge less rapidly than the

point charge system’s k-space sum. In practice it is likely that the same k-space cutoff

would be used for point charge and Gaussian subsystems, so the energy in its current

form would suffer from significant truncation error at short range. To rectify this

issue, some of the energy calculation can be shifted into real space by splitting up the

integral of Equation (3.32).

U =
π

2abc

∫ α2

0

dt′ t′−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

4t′
+ ik · rij

]

+
π

2abc

∫ η2/2

α2

dt′ t′−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

4t′
+ ik · rij

]

(3.34)

39



The first of these integrals becomes the k-space sum, but the second integral we

compute in real space. Inverting the Jacobi imaginary transformation on this second

integral gives

I2 =
π

2abc

∫ η2/2

α2

dt′ t′−2
∑

i,j

QiQj

∑

k

exp

[

−|k|
2

4t′
+ ik · rij

]

=
1

2
√
π

∫ η2/2

α2

dt′ t′−1/2
∑

i,j

QiQj

∑

n

exp
(

−t′ |rij + n|2
)

=
1

2
√
π

∫ ∞

α2

dt′ t′−1/2
∑

i,j

QiQj

∑

n

′

exp
(

−t′ |rij + n|2
)

+
1

2
√
π

∫ η2/2

α2

dt′ t′−1/2
∑

i

Q2
i

− 1

2
√
π

∫ ∞

η2/2

dt′ t′−1/2
∑

i,j

QiQj

∑

n

′

exp
(

−t′ |rij + n|2
)

(3.35)

where the n = 0, i = j term has been treated separately. The first and third integrals

are simply the naive s = 0 value of U1(s) as given in Equation (3.8) except with α2

replaced by η2/2 for the third integral. The second integral can easily be computed

explicitly. Hence (3.34) can be rewritten as

U =
1

2V

∑

k 6=0

4πe−k2/4α2

k2
|S (k)|2 + 1

2

∑

i 6=j

QiQj

erfc (α |rij|)− erfc
(

η√
2
|rij|

)

|rij|

+

(

η√
2π
− α√

π

)

∑

i

Q2
i

= Upoint charge −
1

2

∑

i 6=j

QiQj

erfc
(

η√
2
|rij|

)

|rij|
+

η√
2π

∑

i

Q2
i . (3.36)

3.5 Combined Point Charge and Gaussian Charge

System

The energy of interaction between the point charge and Gaussian charge subsystems

can be computed in an entirely analogous manner. Considering only the s = 0

calculation for simplicity,

U =
π

abc

∫ ∞

0

dt t−2

n
∑

i=1

N
∑

j=1

∑

k

qiQj exp

[

−|k|
2

4

(

1

t
+

1

η2

)

+ ik · rij
]

, (3.37)

which is similar to Equation (3.31). The factor of 1/2 is dropped since the sums are

over different sets and therefore do not double count. The term in the exponential is
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also altered slightly since there is only a single Gaussian involved in the interaction.

The natural substitution for the integral is t′ = tη2/ (t+ η2), so by analogy to (3.36)

the energy (with tin foil boundary conditions) is

U =
1

2V

∑

k 6=0

4πe−k2/4α2

k2
(S∗

1 (k)S2 (k) + S∗
2 (k)S1 (k))

+
n
∑

i=1

N
∑

j=1

erfc (α |rij|)− erfc (η |rij|)
|rij|

, (3.38)

with S1(k) and S2(k) being the structure factors for the point charge and Gaussian

charge subsystems respectively. The factor of 1/2 has re-entered through the sym-

metrization of the product of the structure factors. The total Coulomb energy of the

combined system is then

U =
1

2V

∑

k 6=0

4π

k2
|S1 (k) + S2 (k)|2 exp

(

− k2

4α2

)

+

(

η√
2π
− α√

π

) N
∑

i=1

Q2
i −

α√
π

n
∑

i=1

q2i

+
1

2

n
∑

i=1

n
∑

j=1

qiqj
erfc (α |rij|)
|rij|

+
n
∑

i=1

N
∑

j=1

qiQj
erfc (α |rij|)− erfc (η |rij|)

|rij|

+
1

2

N
∑

i=1

N
∑

j=1

′

QiQj

erfc (α |rij|)− erfc
(

η√
2
|rij|

)

|rij|
. (3.39)
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Chapter 4

Energy Minimization and Classical
Dynamics

4.1 The Basic Model

Armed with the potential energy of a mixed system of Gaussian charges and point

charges, Equation (3.39), we can now address methods for simulating ionic dynamics

near the model metallic surface. The metal is composed of a discrete collection of

metal sites at positions {Ri} carrying a Gaussian charge with integrated charge {Qi}.
The ions, with positions {ri} and magnitudes {qi}, are treated as rigid point charges.

As the Gaussians represent a metallic surface, that surface must be an electrostatic

equipotential, but the notion of an atomic surface is significantly different from the

surfaces of classical electrostatics. In classical electrostatics one talks of surfaces which

are macroscopic and can therefore be well represented by geometric idealizations (i.e.

a plane, a cylinder, a sphere). On the atomic scale it is no longer reasonable to believe

that the equipotential surface will adopt such a simple geometry. Rather, it should be

corrugated, reflecting the influence of the nuclei. Indeed the corrugations are precisely

the reason a Gaussian charge was introduced to represent the charge distribution on a

metal site. Each site will be constrained to have a fixed Gaussian spread, but the sites

are collectively metallic because they are allowed to redistribute the charge amongst

themselves until the sites (not the geometric idealized surface) are equipotential. The

Gaussian spread is the single parameter entering the model, and unlike the screening

parameter of Ewald summation, this spread is physically significant. It provides a

measure of how tightly the nuclei attract the electron distribution. The choice of an

appropriate parameter will be discussed at length in Chapter 5.

The Coulomb potential at site i is ∂Uc/∂Qi, so the equipotential constraint is
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equivalent to
∂Uc

∂Qi

=
∂Uc

∂Qj

∀ i, j, (4.1)

where Uc is the Coulomb energy given in Equation (3.39). Reed et al. consider a

system which is coupled to external electrodes, capable of sourcing or sinking charge to

maintain a constant potential. [40] This scenario simplifies Equation (4.1) since each

site must be held to the externally applied potential, V0. So the constant potential

constraint is
∂Uc

∂Qi

= V0 ∀ i (4.2)

Put another way, the charges rearrange themselves to minimize

UT = Uc − V0

∑

i

Qi (4.3)

The second term represents the interaction between the charges on the metal and

the external system holding the metal at the potential V0. Equation (4.2) is satisfied

when UT is minimized with respect to the Qi’s since the energy minimization implies

∂UT/∂Qi = 0. An isolated system can be treated similarly, but as it has no external

forcing term (V0 = 0). Additionally, the isolated system must maintain a constant

total charge. Hence the constant charge problem requires a minimization of Uc subject

to the constraint
∑

i Qi = Qconst.

The electrostatic treatment of the model metal is then reduced to this minimiza-

tion problem. Given point charges {qi, ri} and metal sites at {Ri}, the induced

charges on the metal sites can be found by minimizing Equation (4.3), or in the case

of a floating electrode, by minimizing Equation (4.3) subject to a linear constraint

that the total charge remain constant.

Electrodynamics could present a more challenging problem, but the Born-Oppenheimer

approximation applies. Metallic charges should rearrange effectively instantaneously

in response to the relatively slow atomic motion. As is standard in molecular dy-

namics simulations, the equations of motion must be discretized and numerically

integrated.1 [20] At every time step of the atomic motions, the charge dynamics is

assumed to have already achieved a stationary distribution given by the electrostatic

minimization. Coulombic forces on the atoms are provided by the gradient of UT

(Appendix C) using the energy minimizing value of the Qi’s.

1The details of a numerical integration of Newton’s laws has been the subject of countless books,
papers, and thesis chapters. For the purposes of this thesis, it is understood that these techniques
are ubiquitous and they are therefore not described in any sort of detail.
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4.2 The Quadratic Form

As shown, the metallic nature of the surface requires nothing more than a minimiza-

tion of UT to find the induced charges. While Uc appears daunting in Equation (3.39),

it is greatly simplified by observing that the energy is a quadratic form in the Qi’s.

Writing the Qi’s as the vector Q, UT can be written as 2

UT (Q) =
1

2
QTAQ− bTQ+ c, (4.4)

where

Aij =
1

V

∑

k 6=0

4π

k2
eik·Rij−k2/4α2

+
erfc (α |Rij|)− erfc

(

η√
2
|Rij|

)

|Rij|
+ 2δij

(

η√
2π
− α√

π

)

=
8π

V

∑

k1≥0

∑

k2,k3

′ cos (k ·Rij)

k2
e−k2/4α2

+
erfc (α |Rij|)− erfc

(

η√
2
|Rij|

)

|Rij|

+ 2δij

(

η√
2π
− α√

π

)

(4.5)

bi = −
1

2V

∑

k 6=0

4π

k2

[

eik·RiS1 (k)
∗ + e−ik·RiS1 (k)

]

e−k2/4α2−

n
∑

j

qj
erfc (α |Ri − rj|)− erfc (η |Ri − rj|)

|Ri − rj|
+ V0

= −4π

V

∑

k1≥0

∑

k2,k3

′ 2Re
[

eik·RiS1 (k)
∗]

k2
e−k2/4α2

−
n
∑

j

qj
erfc (α |Ri − rj|)− erfc (η |Ri − rj|)

|Ri − rj|
+ V0

= −8π

V

∑

k1≥0

∑

k2,k3

′ e−k2/4α2

k2
(cos (k ·Ri) Re [S1 (k)] + sin (k ·Ri) Im [S1 (k)])−

n
∑

j

qj
erfc (α |Ri − rj|)− erfc (η |Ri − rj|)

|Ri − rj|
+ V0 (4.6)

c =
4π

V

∑

k1≥0

∑

k2,k3

′ e−k2/4α2

k2
|S1 (k)|2 +

1

2

n
∑

i=1

n
∑

j=1

qiqj
erfc (α |rij|)
|rij|

− α√
π

n
∑

i=1

q2i (4.7)

Provided A is positive definite, a single minimum exists, so we assume this to be the

case for the remainder of this chapter. This assumption will be verified in the next

2So it is clear that Q is not in R
3, it is not printed in boldface like the positions and wavevectors

are. Q and b are vectors with length N , A is an N ×N and c is a scalar.
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chapter. Let us now proceed to the unconstrained minimization of UT to solve the

constant potential problem. That solution will then be tweaked slightly to perform

the constrained minimization of the constant charge simulation.

4.3 Constant Potential Minimization

Several viable options exist for performing the minimization of UT : matrix inversion,

steepest descent minimization, a Car-Parrinello approach, and conjugate gradient

minimization. For completeness, we survey all four methods, but conjugate gradient

minimization should generally be the weapon of choice.

4.3.1 Matrix Inversion

With A positive definite, the unconstrained minimum of a quadratic form is easily

shown to be at Q = A−1b. [48] The simulations described in this thesis are performed

with a modest number of metal sites (typically < 1000). Inversion of a 1000 × 1000

real, symmetric matrix is exceptionally fast, so on first glance it appears that Q =

A−1b can be rapidly and trivially computed by explicit matrix inversion. The catch

is that each matrix element of A requires a fairly expensive k-space sum. Since these

sums are limiting, calculating A scales as O(N2) in the number of metal sites. The

gradient of Equation (4.3) is given by

∂UT

∂Qi

= AQ− b, (4.8)

As shown in Appendix C, this gradient can be calculated with O(N) k-space sums

by computing the structure factor then squaring its modulus. Amazingly, this means

that given some Q, the product AQ can be computed much faster than all of the

matrix elements of A could be found. We will show that this property usually make

iterative minimization schemes more appealing than the explicit matrix calculation.

However, if the metal site positions are a constant of the simulation (rigid elec-

trode), A will also be a constant of the simulation. In such a situation, one could

perform a single O(N2) calculation at the beginning of the simulation and store the

inverted matrix A−1. Thereafter each exact minimization would require only the

O(N) calculation of b at every time step. Furthermore, many model electrodes will

have a high degree of symmetry, leading many of the rij vectors, and therefore many

of A’s k-space sums to be identical. This means sufficient symmetry would allow A

to be cleverly computed cheaper than O(N2). Even the best iterative methods will
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require roughly ten of the O(N) AQ products per time step, so the matrix treatment

is faster when a rigid electrode will be simulated for more than N/10 dynamical time

steps.

A subtle caveat is that A depends on the cell box through the k-space sums. Even

if the R’s are fixed, a constant pressure simulation would cause A to vary across

time steps. These effects will likely be negligible, but one should investigate more

closely before blindly applying the matrix inversion scheme to a constant pressure

simulation.

4.3.2 Steepest Descent

As alluded to previously, iterative minimization methods can be advantageous because

they make use of the squared structure factor to compute ∇UT with O(N) k-space

sums. The simplest such scheme is the method of steepest descent. Starting with

some seed value of Q, we move “downhill” along the steepest possible path, −∇UT .

The optimal step in this direction is chosen by minimizing the energy along this search

direction, a so-called line search. This procedure is repeated until the norm of the

gradient drops below some (very small) threshold. If nothing were known about the

functional form of the energy then the line search could be performed by a minimum

bracketing algorithm such as Brent’s Method. [39]

Because UT is known to be quadratic, the line search can be performed much more

quickly without ever re-evaluating the energy along the search direction. The idea

can be motivated simply. The critical observation is that given a quadratic form, the

energy projected onto any search direction will be a parabola. Let us denote this

projected energy by

f(x) =
1

2
ax2 + bx+ c.

We are given an initial seed point, x0 and the directional derivative at that point,

f ′(x0). Since the parabola’s slope is a linear equation, knowledge of x0, f
′(x0), and the

curvature, a, is sufficient to determine how far from the minimum x0 lies. Specifically,

xmin = x0 −
f ′(x0)

a
.

There is a small jump to compute a (the one dimensional curvature along the search

direction) from A (the curvature matrix). Readers interested in those details are

directed to Shewchuk’s excellent paper. [48] Even with these optimal step sizes,

steepest descent convergence can be slow. The difficulty arises from the fact that

a move along the direction of steepest descent can result in oscillations within a

46



steep trough. This phenomena, depicted in Figure 4.1, is the reason steepest descent

minimization will be avoided in practice.

-1 -0.5 -0 0.5 1 1.5

1

2

3

Figure 4.1: Steepest descent trajectory on 2d surface. Note the oscillations along the
trough.

4.3.3 Car-Parrinello Method

Steepest descent minimization is disfavored because it converges so slowly. Updat-

ing Q along its direction of steepest descent can be resuscitated by using a Car-

Parrinello (CP) approach. To simplify our dynamics, we previously invoked the

Born-Oppenheimer approximation. Now we actually want to take a step backwards

and reconsider the charge dynamics to be on equal footing with the atomic dynam-

ics. This is not to say the Born-Oppenheimer approximation is invalid. Rather we

want to generate some fictitious (and physically incorrect) charge dynamics that at

every time step lies “close enough” to the true UT -minimizing value of Q. Though

the value of Q at every time step contains error, it is possible for these errors to

be effectively unbiased such that the statistics of the r trajectory is unaffected. We

perform this magic by extending the Lagrangian to include a fictitious kinetic energy

term, 1
2

∑

i MiQ̇
2
i . Mi is referred to as a fictitious mass of the charge magnitudes,

but this is nothing more than an aphysical parameter to control rates of convergence.

The Lagrange multiplier methods of Appendix D give rise to the equations of motion










mir̈i = −∂Uc

∂ri
−∑m λm(t)

∂gm
∂ri

MiQ̈i = −∂Uc

∂Qi
+ V0 −

∑

m λm(t)
∂gm
∂Qi

gm = ∂U
∂Qm
− V0 = 0

(4.9)

where the constant potential constraint is imposed by the constraining forces λm

and the R’s and q’s have been assumed stationary. Now suppose the numerical

47



integration of these differential equations is performed with a very small time step.

If the system begins with the constant potential constraints satisfied then after a

very small time step the constraints must remain very nearly satisfied. This means

that for a sufficiently small time step, the λ’s are very small relative to the ∂U/∂ri

and ∂U/∂Qi terms. We therefore choose to neglect the constraint forces entirely by

setting λ = 0.
{

mir̈i = −∂Uc

∂ri

MiQ̈i = −∂Uc

∂Qi
+ V0

(4.10)

In one time step the error is negligible, but the error propagates and one would expect

that after many such time steps the constraint will no longer be satisfied. After all,

we have just removed the very forces that impose the constraint. The saving grace

is that when λ = 0 in equations (4.9), a force is applied to Q along the direction of

steepest descent. If the charges start in an already minimized position (i.e. start on

the adiabatic surface) and the time steps are sufficiently small, then several steepest

descent steps can be taken before the ions move appreciably. Because ions will move

slowly relative to the Qi dynamics, the ions will effectively experience a force that

is averaged out over the past several Qi configurations. While the constant poten-

tial constraint is not rigorously upheld, the zig-zagging nature of steepest descent

steps means the system often overshoots the minimum in opposing directions. The

consequence is that though the equipotential constraint is not rigorously enforced,
〈

∂Uc

∂Qi
− V0

〉

= 0, where 〈· · · 〉 denotes a temporal averaging over several time steps

during which the ions do not move appreciably. It is for this reason that the statistics

of the r trajectories are not biased. The success of the CP method hinges upon using

a sufficiently short time step and an effective mass, Mi, that allows the charges to

react quickly to changes in the ion positions. Ensuring that there is no systematic

drift away form the constrained surface is a crucial and delicate endeavor. These

concerns are addressed in detail in a review by Remler and Madden. [43]

The method can be improved still further by thermostating the Q system to a low

temperature with a Nosé-Hoover bath. The thermostat strongly forces the charges

into their energetic minimum to ensure adiabaticity. Critically, this can be done in-

dependently from the thermostating of the ionic degrees of freedom such that the

charges are held at low temperature even when the atoms are held at a high tempera-

ture. The thermostating techniques are discussed at length in Frenkel and Smit. [20]

For still more detail, the work of Tuckerman et al. provides a mathematically satisfy-

ing explanation of non-Hamiltonian dynamics as a means of sampling the NV T and

NPT ensembles. [62, 63]
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4.3.4 Conjugate Gradient Method

We saw that directly computing A allows for the exact minimization by matrix in-

version. We also observed that iterative schemes exist and are capable of converging

to a minimum more cheaply than A’s matrix elements can be calculated. Unfortu-

nately we have no guarantee that the steepest descent trajectory will converge more

quickly than an explicit matrix inversion could have done the job. The power and

beauty of the conjugate gradient (CG) approach is that it is an iterative and ex-

haustive search. Like steepest descent minimization, CG can be terminated when

it falls within a threshold of the minimum, but unlike steepest descent, CG exactly

finds the minimum in at most N steps.3 Each CG step requires an O(N) gradient

calculation, so convergence is guaranteed in O(N2). This is formally the same cost

as the matrix approach, but CG is actually much cheaper as it can be stopped once

it is “close enough.” In fact, it is typical that CG only requires a handful of steps

before sufficient convergence is achieved. This is a general observation for CG, but

it is especially true for our application because Q for each time step is seeded with

Qmin from the previous time step
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(a) Steepest Descent
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(b) Conjugate Gradient

Figure 4.2: Comparison of steepest descent and conjugate gradient minimizations
in two dimensions. The difference between rates of convergence becomes even more
pronounced as the dimensionality increases.

The method is outlined here, but a few of the details are not fully proven. These

details are simple to show, and they are all included in Shewchuk’s complete, acces-

sible explanation of the CG method. [48]

3The minimum is rigorously found only for exact arithmetic. In practice round-off error can
prevent the precise minimum from being found. This round-off problem is generally a concern only
for especially high dimensional systems.
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Assume we seed Q with the value Q(0), but the true minimum lies at Qmin.
4 Since

Q ∈ R
N it must be possible to move from Q(0) to Qmin in a series of N steps along

any arbitrary basis vectors of the space. We will treat the basis vectors as a sequence

of N search directions, and we need a way to compute the optimal step size in each

of these directions. In general these basis vectors are hopelessly coupled together.

We cannot optimize the step size along one basis vector when we don’t already know

the optimal steps along all of the other directions. We state without proof that the

problem is decoupled when a set of A-orthogonal basis vectors,
{

d(i)
}

, are used as

the search directions.5 By A-orthogonal it is meant that

dT(i)Ad(j) = 0 if i 6= j (4.11)

In Equations (31) and (32) of his paper, Shewchuk shows that optimal steps take the

form

Q(i+1) = Q(i) + α(i)d(i) (4.12)

α(i) =
dT(i)Ae(i)

dT(i)Ad(i)
(4.13)

where e(i) = Q(i) − Qmin is the error in the ith step. This value of e(i) is unknown.
6

However, Ae(i) can be known since this is the gradient at point Q(i), which we can

compute from Appendix C.

Ae(i) = AQ(i) − AQmin =
(

∇U
(

Q(i)

)

+ b
)

− (∇U (Qmin) + b) = ∇U
(

Q(i)

)

(4.14)

The A-orthogonal basis is used precisely for this reason. It allows the optimal step

sizes to be related to the gradient evaluated at the current point. Given the A-

orthogonal set of search directions, N steps of the form of Equation (4.12) can be

taken to complete the minimization. This is true because the A-orthogonality means

a step along one search direction never “undoes” the optimality of the previous step.

The final challenge is to generate such a set of search directions.

In the same way that a Gram-Schmidt procedure generates a set of orthogonal ba-

sis vectors from an arbitrary basis, a conjugate Gram-Schmidt procedure can generate

a set of A-orthogonal basis vectors,
{

d(i)
}

from an arbitrary basis,
{

u(i)

}

.

d(i) = u(i) −
i−1
∑

j=1

uT
(i)Ad(j)

dT(j)Ad(j)
d(j), (4.15)

4The value of the vector Q will be updated iteratively and we denote the ith iteration Q(i). This

should not be confused with Qi, which is the charge on the ith metal site.
5This is shown in (34) and (35) of Ref. [48].
6If it were known, the problem would be solved since Qmin = Q(i) − e(i).
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where the second term just subtracts out components in the direction of the previous

d(j)’s. While this procedure works, it is expensive when performed on an arbitrary

basis. Each new vector must remain A-orthogonal (conjugate) to all of the preceding

vectors, so the conjugate Gram-Schmidt process requires all previously generated vec-

tors to be remembered. The CG approach applies conjugate Gram-Schmidt to a very

special basis, the basis formed by the successive gradient vectors, {r1, r2, . . . , rN}.7
Because the basis is formed by the sequence of gradients, there is a recurrence relation.

r(i+1) = Ae(i+1) = A
(

e(i) + α(i)d(i)
)

= Ae(i) + α(i)Ad(i) = r(i) + α(i)Ad(i) (4.16)

Now recall that our A-orthogonal directions are in a sense decoupled. Optimizing

a given direction does not undo the prior optimizations. This property implies that

the (i + 1)th gradient, r(i+1), is orthogonal to the prior search space.8 As r(i) lies in

this prior search space, rT(i+1)r(i) = 0. But the recurrence relation of Equation (4.16)

allows this to be rewritten as

rT(i+1)

(

r(i−1) + α(i−1)Ad(i−1)

)

= 0 (4.17)

For the same reason that rT(i+1)r(i) = 0, rT(i+1)r(i−1) = 0, giving

α(i−1)r
T
(r+1)Ad(i−1) = 0 (4.18)

Hence r(i+1) is automatically A-conjugate to d(i−1). The recurrence relation could

have just as easily been used a second time in Equation (4.17).

rT(i+1)

(

r(i−2) + α(i−1)Ad(i−1) + α(i−2)Ad(i−2)

)

= 0

⇒ α(i−1)r
T
(i+1)Ad(i−1) + α(i−2)Ad(i−2) = 0

⇒ α(i−2)Ad(i−2) = 0,

where (4.18) was used for the last step. This procedure can be repeated to demon-

strate that r(i+1) is A-orthogonal to the entire set
{

d(1), . . . , d(i−1)

}

. Symbolically,

rT(i+1)Ad(j) = 0 ∀ j ≤ i− 1 (4.19)

7These gradient vectors are commonly known as the residuals. As shown by (4.14), the gradient
is equivalent to Ae(i), which is the residual for the closely associated problem Ax = b. That is to
say, r(i) = Ae(i) = Ax(i) − b.

8If the gradient contained any components which were not orthogonal it would imply that the
prior search space had not been optimized
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This set of relations greatly simplifies the conjugate Gram-Schmidt procedure. Re-

turning to Equation (4.15) and inserting the set
{

r(i)
}

for the arbitrary basis
{

u(i)

}

gives

d(i) = r(i) −
i−1
∑

j=1

rT(i)Ad(j)

dT(j)Ad(j)
d(j) (4.20)

Equation (4.19) demonstrates that the numerator within the sum vanishes unless

j = i− 1, leaving

d(i) = r(i) −
rT(i)Ad(i−1)

dT(i−1)Ad(i−1)

d(i−1) (4.21)

A couple of clever algebraic tricks allows this to be further reduced.9

d(i) = r(i) −
rT(i)r(i)

rT(i+1)r(i+1)

d(i−1) (4.22)

The important point is that the new search direction, d(i) is given by a linear com-

bination of the gradient and the previous search direction. No other prior directions

are required, so the generation of the A-orthogonal search directions is fast and easy.

This completes the algorithm. Each new search direction is generated from Equation

(4.22) and a step is taken along that direction as determined by Equation (4.13).

Pseudocode for the entire procedure is given in Appendix E

4.4 Constant Charge Constraint

It was shown that an isolated constant charge simulation corresponds to the mini-

mization of Uc (equivalently UT with V0 set to zero) subject to the constraint
∑

i Qi =

Qconst. We adapt each of the four minimization methods to this constrained problem.

As before, the conjugate gradient approach is generally preferred.

4.4.1 Matrix Inversion with Constant Charge

The constant charge restriction just adds a single linear constraint to the quadratic

form. Explicitly, we write the constant charge constraint as vTQ = Qconst, where

vT = (1, 1, . . . , 1) and Qconst is the value of the constant charge.10 Appendix D

reviews how Lagrange multipliers allow one to convert the constrained extremization

9Left multiplication of Equation (4.16) by rT(i+1) and shifting of the index shows rT(i)Ad(i−1) =

1
α(i−1)

(

rT(i)r(i)

)

. Inserting α(i−1) from Equation (4.13) and making use of another orthogonality

relation completes the transformation.
10The notation here is less than ideal because Q ∈ R

N and Qconst ∈ R
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into an equivalent unconstrained problem. Application of Equation (D.1) reveals that

our constrained minimum is the unconstrained minimum of

U(Q, λ) =
1

2
QTAQ− bTQ+ c+ λ

(

vTQ−Qconst

)

(4.23)

The critical point is given by Q = A−1 (b+ λv). To solve for λ left multiply this

relation by vT , recalling that vTQ = Qconst (our constant charge constraint). Hence

Qconst = vTA−1b+ λvTA−1v. Rearrangement yields

λ =
Qconst − vTA−1b

vTA−1v
.

So, the Q which minimizes UT subject to the constant charge constraint is given by

Q = A−1

(

b+
Qconst − vTA−1b

vTA−1v
v

)

(4.24)

4.4.2 Constant Charge Steepest Descent

As with the steepest descent algorithm, the constrained steepest descent iteratively

updates Q(i) by adding a step of size α in the search direction d.11 This d is −∇UT

in the unconstrained problem, but in the constrained problem the search direction

must be adapted to satisfy the constraint. To determine the proper adaptation, we

consider the equivalent unconstrained problem of Equation (4.23). In the extended

(Q, λ) space a steepest descent algorithm would move along the search direction

di = −
∂U(Q, λ)

∂Qi

= −∂Uc

∂Qi

− λv. (4.25)

To solve for the search direction, we must eliminate λ by making use of the constant

charge constraint. Suppose the minimization is initialized at some Q(0), the value of

Q at the next minimization step is

Q(1) = Q(0) + αd.

From the constant charge constraint,
∑

i Q
(0)
i =

∑

i Q
(1)
i , requiring that α

∑N
i=1 di = 0.

Inserting (4.25) yields

di = −
∂Uc

∂Qi

+
1

N

N
∑

i=1

∂Uc

∂Qi

(4.26)

A line search can be performed as in the unconstrained problem to solve for the

optimal step size α.

11As one final notational point, this Q(i) is the same as what was called Q(i) before. The switch

in notation is to accommodate the expression Q
(0)
i

here whereas before we wanted to accommodate
QT

(i)
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4.4.3 Constant Charge Car-Parrinello

The Lagrange multiplier µ(t) can be introduced in order to enforce the constant

charge constraint, h =
∑

i Qi = Qconst. The effective Lagrangian gains a µ(t)h term,

so the new equations of motion are











mir̈i = −∂Uc

∂ri
− µ(t) ∂h

∂ri

MiQ̈i = −∂Uc

∂Qi
− µ(t) ∂h

∂Qi

h =
∑

i Qi = Qconst

(4.27)

Since h does not depend on spacial coordinates, ∂h
∂ri

= 0. Additionally ∂h
∂Qi

= 1.











mir̈i = −∂Uc

∂ri

MiQ̈i = −∂Uc

∂Qi
− µ(t)

h =
∑

i Qi = Qconst

(4.28)

These equations of motion still contain µ(t), the force on a charge required to maintain

the constant charge constraint. Critically the µ(t) that is added to the force on each

charge magnitude Qi is independent of i. For a discretized numerical integration of

the equations of motion, the constraint forces can be solved fairly easily. Letting

−∂Uc

∂Qi
= FQi

,

ḧ =
∑

i

Q̈i =
∑

i

(

FQi

Mi

− µ(t)

Mi

)

Since h = Qconst, ḧ = 0 and

µ(t) =

∑

i

(

FQi

Mi

)

∑

i

(

1
Mi

) , (4.29)

where Mi is the ficitious mass of the ith induced charge. If one reasonably sets all

fictitious masses equal, this expression can be further simplified to

µ(t) =

∑

i FQi

N
. (4.30)

Hence the CP constant charge equations of motion are

{

mir̈i = −∂Uc

∂ri

MiQ̈i = −∂Uc

∂Qi
+ 1

N

∑

j

(

∂Uc

∂Qj

) (4.31)
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4.4.4 Constant Charge with Conjugate Gradient Minimiza-
tion

The constant charge steepest descent minimization did not take steps in the direction

of the gradient. The presence of the constraint meant that the search direction

was actually the gradient projected onto the constrained surface. This prevents the

algorithm from exploring the part of the space that corresponds to a changing total

charge. The same projection of the gradient onto the feasible surface is needed for

conjugate gradient minimization with a linear constraint. The required algorithm is

proven by Shariff. [47] We adapt his results to the constant charge constraint.

Observe that the charge vector can be expressed as
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(4.32)

The matrices are not full rank. The second matrix projects out the fully symmetric

component corresponding to changes in the total charge, so the first matrix must

be the one that projects onto the feasible search space. In Shariff’s notation, this is

H. In the unconstrained CG minimization the gradients,
{

r(i)
}

are conjugate Gram-

Schmidt-ed to generate the search directions. In the constrained problem we use the

projection of these gradients onto the feasible search space,
{

Hr(i)
}

. This leads to a

slightly different calculation of the optimal step size α(i), and a slightly different linear

combination of Hr(i) and d(i−1) is needed to compute the next search direction d(i).

These differences are shown in Shariff’s paper and can be found in the pseudocode of

Appendix E.
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Chapter 5

Selection of the Parameter η

The metal model outlined in Section 4.1 introduces a single physical parameter, η, to

control the size of the Gaussian metal sites. The other parameter, the Ewald screening

parameter α, adjusts the partition between real and reciprocal space, influencing the

speed of convergence of these two sums. Provided both sums are converged, the energy

is independent of α, so the parameter is numerical and not physical. In contrast, η

is not a mere numerical tool. Its selection represents a physical statement about how

tightly the nuclei bind charge density. The metallic equipotential constraint allows

Gaussians to exchange charge with each other, but the model forces the local charge

distribution to be Gaussian around all sites. In essence, the model is a rudimentary

classical density functional theory with a highly restrictive basis of a single Gaussian

per metal site. Because the basis set is so small (relative to normal DFT basis sets),

the accuracy of the model will depend significantly on the choice of an appropriate η.

In this chapter we address the selection of η in three parts. First, we explore

how the choice of η affects the convergence properties of the numerical minimization.

It was observed in Section 4.2 that the minimization of the quadratic form requires

the matrix A from Equation (4.4) to be positive definite, and we discuss how this

requirement influences the choice of η. Next we discuss the impact of η on the agree-

ment with continuum electrostatic descriptions of metals. By studying the textbook

example of a conducting sphere, we show that the continuum results will be given in

the macroscopic limit irrespective of the choice of η, thereby challenging the method

of Siepmann and Sprik’s original parameterization of the model. [49] Instead, we pa-

rameterize the model based on microscopic considerations. Indeed, since the choice

of η affects only short-range forces it is only natural that the fitting of η depend upon

the local charge distribution on the metal.
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5.1 Positive Definiteness of A

In the absence of a clear method for analytically determining the conditions on η that

make A (as given by Equation (4.5)) positive definite, we numerically compute A for

a square grid of metal sites. The 100 site grid was constructed with 0.5 au lattice

spacing and the calculations were performed with α = 0.25 au−1 in a cubic periodic

box of length 50 au. The k-space sums were truncated at kmax = 8 such that only

terms with k2 ≤ 64 were retained. The value of the matrix A is independent of metal

charge magnitudes and of the entire ionic system. It is just a function of the metal

geometry that expresses the coupling between metal sites. These couplings in turn

determine the stability of the minimization.

Positive definite matrices have strictly positive eigenvalues, so it is sufficient to

examine the behavior of A’s minimum eigenvalue. Existence of both positive and

negative eigenvalues implies that the space has a saddle point, so minimization tech-

niques will be unable to identify a global minimum. If, however, the matrix is positive

definite, the techniques outlined in Chapter 4 will all apply. The minimum eigenvalue

of the 10×10 grid’s A matrix is plotted in Figure 5.1. Several critical observations can

be made. First, the matrix is not positive definite when η drops below a critical value

of approximately
√
2α. The significance of this value was discussed after Equation

(3.33). When η is less than this critical value, the metal site Gaussians are so large

that it no longer makes sense to shift any of the calculation to real space. Instead, an

alternative form given by Equation (3.33) should be used. Secondly, the existence of

small eigenvalues means there is a degree of freedom which converges very slowly to

the minimum. Figure 5.1 makes it clear that increasing the value of η will result in

more rapid convergence of the worst case scenario. When the minimum eigenvalue is

especially small (but still positive), numerical error could prevent the minimization,

so for numerical purposes, it is generally best that η be “sufficiently large,” where

unfortunately sufficiently large depends on the geometry of the metal sites.

It is, of course, desirable to have an analytic way of thinking about the nature of

Figure 5.1. Using very weak bounds, one can understand that there must exist some

critical value of η below which the minimum eigenvalue is negative and above which

it is guaranteed to be positive. To show this, we make use of the fact that a necessary

(but not sufficient!) condition for A to be positive definite is that Aii > 0. Looking

back at Equation (4.5), it is clear that the diagonal elements of A are independent of
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Figure 5.1: Minimum eigenvalue of the matrix A, whose matrix elements are given
by Equation (4.5) for a 10 × 10 grid of metal sites as described in the text. When
all eigenvalues are positive, the global minimum of the quadratic form is given by
Q = A−1b. The log plot (right) emphasizes that as η approaches

√
2α from above, the

minimum eigenvalue remains positive but can be very small, indicating that complete
convergence could be very slow.

the metal site positions and are given by

Aii ≈ 2

(

η√
2π
− α√

π

)

+
8π

V

∑

k1>0

∑

k2,k3

e−k2/4α2

k2
(5.1)

The k-space sum can be approximated by converting the sum into an integral in the

exact same way that the three dimensional free space density of states is computed.1

Converting the sum to an integral introduces error, the most significant of which

comes from the region near |k| = 0 and above |k| = kmax. Because the k-space sum

is truncated and excludes the k = 0 term, we integrate from |k| = (3/ (4π))1/3 to

|k| = kmax to give

Aii = 2

(

η√
2π
− α√

π

)

+
2α√
π

[

erfc

(

31/3π2/3

41/3αL

)

− erfc

(

πkmax

αL

)]

=
2η√
2π
− 2α√

π

[

erf

(

31/3π2/3

41/3αL

)

+ erfc

(

πkmax

αL

)]

(5.2)

So as an exceptionally weak bound, Aii < 0 and therefore A is guaranteed to not be

positive definite when

η ≤
√
2α

[

erf

(

31/3π2/3

41/3αL

)

+ erfc

(

πkmax

αL

)]

. (5.3)

Inserting the parameters that generate Figure 5.1 into this bound guarantees at least

one negative eigenvalue for η ≤ 0.0633. Clearly this is a weak bound, but the point

1See any good solid state physics textbook
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is that there must be a value of η below which the minimum eigenvalue is negative,

so the behavior of Figure 5.1 is not particularly concerning.

It is also worth noting that the diagonal elements can be made arbitrarily large

while not increasing the off-diagonal matrix elements by simply increasing η. A is

necessarily positive definite if the diagonal exceeds the sum of the absolute value of

the other matrix elements in the row. This tells us that A will necessarily be positive

definite when η exceeds some threshold. These bounds shed some light on the general

structure of Figure 5.1, but they are not particularly useful in evaluating whether or

not a particular value of η will be sufficiently large to provide a stable minimum.

Relying on the numerical results for the planar metal and also for a spherical metal

discussed later, the location of the critical η at which the minimum eigenvalue equals

zero is quite robust with respect to metal geometry. Typical simulations will use α

sufficiently small that η comfortably exceeds 2
√
α, so we will be content assuming A

to be positive definite.

5.2 Comparison with Continuum Electrostatics

For the metal model to be useful, it must converge to continuum electrostatic theory

at long range. The convergence arises naturally from the construction of the discrete

metal surface since inter-site interactions are built upon the Coulomb r−1 potential.

Continuum electrostatics can be derived from this potential and some vector calculus

in the limit that the discretization of the metal surface becomes infinite and smooth.

Our model does not take this limit, but at long distances it should rapidly converge,

acting as though it were a continuous metallic surface. To confirm that the macro-

scopic theory is properly returned, we focus on the textbook example of a conducting

sphere.

5.2.1 The Image Charge Problem

The characteristic of a metal surface is that it maintains a constant electric potential.

This is because the metal allows instantaneous redistribution of charge. Any nonzero

gradient of the potential would force charge to redistribute until a stationary charge

distribution is maintained. When the electronic motion has stopped, the charge

distribution is stabilized to be whatever distribution that forces the metal surface to be

equipotential. When a conductor is present in an electrostatics problem, interactions

with the conductor’s stationary surface charge density must be added to the ordinary

interactions between the fixed charges of the problem. For a small class of problems
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there exists a particularly elegant shortcut to determining the effects of these induced

surface charges - the method of image charges. We utilize this approach to obtain

simple analytic results to which our metal model can be compared.

To understand the method of images we briefly review elementary electrostatic

theory. The electric potential is merely given by the solution to Poisson’s equation

(in cgs units),

∇2φ = 4πρ.

Specification of the fixed charges, ρ, exactly determines φ as the solution of the partial

differential equation provided the boundary conditions are specified. Electrostatics

in infinite free space is straightforward because of the trivial boundary conditions:

φ is a constant at infinity. Introduction of a metal surface alters the boundary con-

ditions, complicating the solution of Poisson’s equation. In general this can present

computational difficulties, but potential theory offers a shortcut by guaranteeing that

the solution of Poisson’s equation is unique. Any charge distribution that satisfies

the boundary conditions will give rise to the correct potential, even if the charge

distribution was obtained by nonphysical trickery.

As the simplest possible example, consider a point charge at position x = d near

a planar metal surface (x = 0). Rather than explicitly solving for the surface charge

distribution on the metal, we note that the plane x = 0 is necessarily equipoten-

tial if we introduce an equal and opposite charge at x = −d. This extra charge is

d d

Metal Vacuumx = 0

q−q

R r

R2

r

q −

qR

r

d1 d2

d1

d2

= r
R

Figure 5.2: Diagram of image charge problems. The +q charge induces surface charge
at the metal interface. This surface charge collectively exerts a force exactly equal to
the force that would be exerted by the image charge that is shown. This is guaranteed
by a uniqueness theorem since symmetry requires that the potential vanishes exactly
for every point on the x = 0 surface (left) or on the sphere (right).
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referred to as the image charge, and by uniqueness, the x ≥ 0 electric potential of

the point charge/image charge system is identical to that given by the original point

charge/metal problem. The point charge and image charge are particularly easy to

work with since the attractive force is given by the r−2 force law. The energy is

similarly found from the point charge/image charge system, though there is an extra

factor of 1/2 that must be included since the electric fields are not supported in the

metal half of the space (x < 0). [59]

The image charge method is particularly serendipitous in the case of a planar

metal because the symmetry allows the surface charge effects to be described by the

inclusion of a single ficitious point charge. This is actually a special case of a point

charge in a conductive sphere (sphere radius tending to∞), which can also be treated

with the addition of a single image charge. Consider a point charge with magnitude

q positioned at radius r inside a conducting sphere of radius R. It can be shown

that the potential everywhere on the sphere will exactly vanish if a point charge with

magnitude −qR/r is placed a distance R2/r from the center of the sphere along the

same ray that extends from the sphere’s center to the original point charge. [30]

Given this observation, the radial force acting on the inner point charge due to the

conducting sphere can easily be computed as the force between the point charge and

the image charge.

Fr̂ = −
q2Rr

(R2 − r2)2
(5.4)

Remembering to include the extra factor of 1/2, the energy can be found in equally

effortless fashion.

U = − q2R

2 (R2 − r2)
(5.5)

These analytic results provide the ideal comparison for the model metal surface.

5.2.2 Calculations on a Conducting Sphere

A grounded conducting sphere of radius 7.94 Å was modeled with 2000 Gaussian

charges centered along a golden section spiral so as to achieve approximately equal

spacing between sites. [45] A single point charge with magnitude e was placed inside

the sphere, and the conjugate gradient method was used to minimize the interaction

energy given by Equation (3.39).2 Periodic images were positioned far away from

2In the continuum problem the total induced charge is −q, so constrained conjugate gradient
minimization was also performed to restrict the induced charge to be−q. As expected, no appreciable
difference was observed between the constrained and unconstrained minimization since the constant
charge calculation was constrained to the “correct” value as predicted by continuum theory.
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each other by using a large cubic box with 42.33 Å side lengths, and the Ewald

screening parameter was set to α = 0.132 Å−1. The interaction energy and radial

force experienced by the point charge were computed for several values of η over the

range of point charge positions. Figure 5.3 shows the induced charge distribution for

Figure 5.3: Induced charge distribution on a 7.94 Å radius sphere composed of 2000
Gaussian sites (η = 4.7 Å−1) with a unit point charge (shown as a larger circle)
positioned 3.97 Å from the center of the sphere. The color coded charge distribution
is given in units of the point charge. The Gaussian sites are shown as circles with
radius η−1.

η = 4.7 Å−1 with the point charge placed 3.97 Å from the center of the sphere. As

made clear from Figure 5.4, the energies and forces rapidly converge to the analytic

solution at long range with little sensitivity to η. At short range, the choice of η

exerts considerable influence because it constrains the induced charge density to be

bound more or less tightly to the atomic sites.

An effective sphere radius can be defined by fitting the long-range portion (r <

R/3) of Figure 5.4 to the continuum energy expression, Equation (5.5). Figure 5.5

summarizes the η-dependence of this effective radius, which equals the physical radius

when η ≈ 8 Å−1. Equality of the physical and the effective long-range image planes

implies that the model conductor will behave precisely like a spherical conductor at

long range. This equivalence motivated Siepmann and Sprik’s initial parameterisa-

tion, which has followed through to subsequent works. [40, 41, 64, 65] However, we

note that our model conductor is not intended to be a smooth sphere on the atomic

scale. Indeed, the corrugated equipotential is considered a desirable aspect of the

model, and so the metal’s capacitance can be expected to deviate slightly from the
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Figure 5.4: Potential energy of (left), and radial force acting upon (right), a point
charge a distance r from the center of a 7.94 Å radius conductive sphere. The calcu-
lation is performed with the equipotential constraint enforced over 2000 sites of the
sphere. The analytic image sphere result is given by the solid line. Computational
results are shown for η = 1.89 Å−1 (+), 3.78 Å−1 (×), 5.67 Å−1 (+×), and 7.56 Å−1

(�).

capacitance of a perfect sphere. As a result, it is not necessary for η to be tuned to

a value that forces perfect agreement with the results of a perfect continuum sphere.

What is essential is that the metal appears to behave like a metal at distances for

which the discrete nature of the surface becomes insignificant. It is clear from Fig. 5.4

that the force on a long range point charge is insensitive to η. Fig. 5.5 expresses this

insensitivity in a different form. The differences between effective and geometric im-

age sphere radii are so small that they are insignificant to a long-range point charge.

A notable exception occurs as η is increased towards the infinite limit, at which point

the Gaussians become point charges with infinite self-energies. As η increases, the

effective sphere radius also increases without bound. Therefore one must pass to

longer and longer range before forces will asymptotically approach the continuum

limit, with η = ∞ failing to reproduce long-range electrostatics at any finite range.

For this reason, the numerical analysis was restricted to modest values of η, but this

restriction can be rationalised on physical grounds. A metal’s electronic density is

delocalized on the atomic scale, which should be interpreted as the intersite distance,

so large η can be disregarded as inappropriate representations of delocalized charge.

We conclude that a point charge far from our model electrode experiences a force

which essentially acts like the ideal smooth conductor at long range for a wide range

of sufficiently delocalized Gaussian spread. However, Fig. 5.4 makes it clear that

short-range forces depend strongly on η, suggesting that the parameterisation should

be determined by the short-range behavior. In describing the charge density as a
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Figure 5.5: An effective image sphere radius, calculated by fitting the asymptotic
(r < R/3) behavior observed in Figure 5.4 to the continuum image charge energy
given by Equation (5.5). The effective sphere radius differs from the physical radius
of 7.94 Å except when η ≈ 8 Å−1 (as indicated by the dashed lines). Agreement at
η ≈ 8 Å−1 does not imply that this is the optimal value of the parameter η (see text).

superposition of Gaussians on each site, it is implicitly assumed that a Gaussian is

a reasonable approximation of the local electronic structure and that the dominant

excitations correspond to redistribution of delocalized charge along a conductor. If

the model is to be used to generate short-range interactions with the metal surface,

we must fit η to the metal’s electronic structure as we attempt to do in Section 5.3.

5.2.3 Calculations on a Potential Biased Sphere

It is trivial to add a potential bias to the computational model via Equation (4.6).

The potential bias allows the total charge to fluctuate, so the unit cell is not generally

neutral. Herce et al. justify the exclusion of the k = 0 term from the reciprocal space

sum even in the case of non-neutral cells [28], so the net charge does not affect the

calculation of forces and energies.3 By charging up the sphere described in the last

section, we confirm that the metal model also captures the correct continuum behavior

of biased electrodes.

The key observation is that the potential bias adds or removes charge from a

conducting sphere, but that this extra charge redistributes itself evenly of the sphere

3It does, however, affect the virial so constant pressure simulations need to compensate for the
pressure due to non-neutrality.
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surface. The surface charge distribution can be considered to just be the superposition

of the unbiased (V = 0) distribution plus an extra evenly dispersed voltage-induced

charge distribution. Because this “extra” charge is uniform over the hollow sphere,

Gauss’ Law can be used to show that it exerts no force on the enclosed point charge.

Hence, even for the charged sphere, classical continuum theory predicts

Fr̂ = −
q2Rr

(R2 − r2)2
. (5.6)

The energy, however, is altered by the potential bias. An extra energy contribution

of QindV must be included, where Qind is the induced charge. The additional energy

can be re-expressed in terms of the capacitance.

U = − q2R

2 (R2 − r2)
+

1

2
CV 2. (5.7)

For an isolated sphere the capacitance is given by the ideal capacitance of a hollow

sphere, Cs = R in atomic units. The calcuations present in Figures 5.6 and 5.7 were

performed with periodic boundary conditions, so the pertinent capacitance is that of

an infinitely replicated set of spheres. This capacitance was not solved analytically,

so the curves were fitted in Figures 5.6 and 5.7 with C = 2R. This analytical model is

compared to the radial force and energies for +2V and +5V bias in the same way as

before.4 It was coincidental that the capacitance was roughly an integer multiple of

the hollow sphere capacitance, as demonstrated by altering the box length of the cell.

Figure 5.8 demonstrates that for an isolated sphere (entirely real space calculation)

Equation (5.7) may be used with C = R, but capacitance would not be so simple

to analytically compute with periodic boundary conditions. Figure 5.8 effectively

provides the numerical calculation of these capacticances, so an analytic expression

is not necessary to proceed.

The implication from the preceding calculations is that the potential bias does not

affect the forces experience by a point charge. This is only the case when the point

charge is located inside of a conducting sphere. A charge outside the sphere would

experience a force acting as if the extra charge is concentrated at the center of the

sphere, so the potential bias can alter the forces in a meaningful way. Similarly, a

potential bias affects the forces experienced by a point charge inside of a non-spherical

conductor. The force cancellation that causes a point charge to not feel the excess

charge on the sphere is unique to the spherical geometry. For this reason, adding a

potential bias to a nanotube is expected to alter the forces on ions inside the tube.

4These voltages are cited in SI units, but the equations (like all other equations in this thesis)
are given assuming atomic units. The voltage conversion from SI to au requires multiplication by
4πǫ0a0/e ≈ 0.03674.
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Figure 5.6: Potential energy of (left), and radial force acting upon (right), a point
charge a distance r from the center of a 7.94 Å radius conductive sphere held to
+2V. The analytic image sphere plus capacitance result is given by the solid line.
Computational results are shown for η = 1.89 Å−1 (+), 3.78 Å−1 (×), and 5.67 Å−1

(+×).

5.3 Fitting η

5.3.1 Back of the Envelope Approximation

The atomic structure of single walled nanotubes (SWNT) is characterized by the

folding of a graphene sheet about a particular chiral vector. This construction is also

used to compute SWNT electronic structure within the tight binding model. The

tube’s electronic structure can be directly related to the structure of the π graphene

bands. [36] As such, the conductive band of the nanotube arises largely from the 2pz

carbon orbitals. Curvature-induced mixing of the sp2 hybridized orbitals is expected

to perturb the π bands slightly, but a crude approximation of the SWNT’s electron

distribution perpendicular to the tube’s surface can be provided by assuming the

conductive electrons will reside in hydrogen-like 2p orbitals. A rough value of the

parameter η can be found by solving for the Gaussian distribution that shares the

same expected electron radius as a carbon 2p orbital.

Using the hydrogen-like carbon (Z = 6) atomic wavefunction,

〈2p |r| 2p〉
〈2p|2p〉 =

5

6
au. (5.8)

The expected radius for the Gaussian distribution is

〈r〉 = 2

η
√
π
. (5.9)

The two distributions share a value of 〈r〉 when η = 1.35 au−1 (η = 2.55 Å−1). The

radial distribution function of this Gaussian and the 2p orbital are shown in Figure
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Figure 5.7: Potential energy of (left), and radial force acting upon (right), a point
charge a distance r from the center of a 7.94 Å radius conductive sphere held to
+5V. The analytic image sphere plus capacitance result is given by the solid line.
Computational results are shown for η = 1.89 Å−1 (+), 3.78 Å−1 (×), and 5.67 Å−1

(+×).

5.9 to demonstrate that the Gaussian is a good approximation for the atomic orbital.

One should not expect this value to be the optimal parameter, but it provides a

reasonable estimate that can be expected to be well within an order of magnitude of

the “correct” value of η.

5.3.2 Comparison with Full DFT Calculations

A more accurate value of η can be obtained by parameterizing to agree with an all-

electron density functional theory calculation of a conducting nanotube. Meunier

et al. performed such a calculation on a (9,0) capped CNT with a 6-31g* basis set

to parameterize a continuum electrostatic model. [33] Their results, reproduced in

Figure 5.11a, give the electrostatic potential due to a point charge and the induced

charge on the nanotube. The exact details of the calculation are not explicitly stated

in the paper by Meunier et al., but from Figure 5.11a’s “free space” curve of a bare

point charge potential it was deduced that the point charge was positioned 10.45

Å from the center of the nanotube axis. It is furthermore assumed that Meunier’s

voltage perpendicular to the tube lies on the plane containing the point charge.

To compare directly with the DFT calculations, the Gaussian charge model was

used to compute the induced charge density and electrostatic potential for the same

nanotube/point charge system. The calculation was performed without periodic repli-

cas, making the summing of the pairwise Coulomb potentials trivial. Induced charge

distributions were computed by the matrix inversion schemes described in Sections
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Figure 5.8: Energy of capacitive charging of conductive sphere under potential bias.
With no periodic replicas the energy is CV 2/2 as expected with C = R for the ideal
sphere. In periodically replicated systems, the effective conductor is actually the
set of all periodic images separated from each other by some box length. The initial
value of the box length (80 au) coincidentally falls near RV 2, but by changing the box
length it is clear that the capacitance is dependent on system size. This is consistent
with what one would expects since the shrinking box forces the metallic sphere and
its replica closer together.

4.3.1 and 4.4.1 for a grounded and conducting nanotube respectively. The results are

plotted with variable η in Figure 5.11b.

The comparison in Figure 5.11 demonstrates that the Gaussian induced charge

model captures the general behavior of the DFT calculation. The floating tube screens

the region inside the tube from the point charge potential, while the grounded tube

also screens the region on the other side of the tube.5 The value of η = 2.55 Å−1

suggested in Section 5.3.1 results in weak electric fields that point in the wrong

direction on the inside of the tube. Increasing η by roughly a factor of two rectifies this

problem. The larger value of η can be rationalized on physical grounds. Since covalent

bonds link the metal sites, they lie closer to each other than to the point charge.

Altering the size of the Gaussian on these metal sites most significantly impacts the

coupling between nearby metal sites, which affects the degree to which metal sites

induce charge in their neighbors. Hence it is the spread of the charge distribution

5Note that the CT curves from Meunier et al. are results from a continuum theory. There is no
DFT calculation for a grounded tube.
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Figure 5.9: Radial distribution functions for a 2p hydrogen-like carbon orbital and for
a Gaussian distribution with η = 2.55 Å−1. The distributions share the same value
of 〈r〉, providing a rough estimate of the parameter η.

in the plane parallel to the metal surface, which most strongly influences the overlap

between neighboring metal sites. A 2pz orbital extends outward perpendicular to

this surface, so the expected spread parallel to the surface is smaller than the spread

computed in Section 5.3.1, corresponding to a larger value of η.

Even with this improved value of η, the exact behavior at the surface of the tube

does not match the DFT calculation. This is neither surprising nor disturbing. In

application, a Lennard-Jones potential will prevent ions from venturing too close

to the nanotube wall. For the Gaussian charge model to be useful, it need only

reproduce the slope of the electrostatic potential away from the walls, something that

is achieved by η ≈ 5 Å−1. Future work aims to perform more DFT calculations

to accurately parameterize η, but ultimately η is just a parameter. The work that

follows is aimed at exploring a class of dynamics in a chaotic system, not to mimic

the exact parameters for a particular material. For this reason, choosing η = 5 Å−1

will be sufficient to proceed.
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Figure 5.10: Induced Gaussian charges on a capped (9,0) charge-neutral carbon nan-
otube due to a point charge. The shown distribution is computed with η = 2.55 Å−1

and the Gaussian sites are plotted with a radius η−1. Charge magnitudes are given
in units of the point charge.
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Figure 5.11: Comparison between a full DFT calculation (left) and the classical cal-
culation with Gaussian surface charges (right) of induced charge in a capped (9,0)
nanotube due to a point charge positioned 10.45 Å off axis. The DFT figure, repro-
duced from Ref [33], shows the same general screening as our classical model for both
floating and grounded tubes.
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Chapter 6

Inorganic Nanotube Formation

Having developed the numerical methods for treating a CNT as a classical metal, we

are now in a position to explore how the metallic nature influences the structure and

dynamics of a molten salt as it fills the tube. A charge-neutral floating CNT as well

as a potential-biased tube can be considered, giving rise to two distinct mechanisms

of filling. Floating tubes fill much like the uncharged rigid tubes that have been

previously studied. [70, 71] Application of a +10 V bias introduces excess charge into

the simulation cell, which allows ions to enter the CNT without requiring charge-

neutrality. Not only are the dynamics of filling different under these conditions, the

stable INT structures are also distinct. As we will see, they can be rationalized as

multiwalled concentric tubes formed of separate anion INTs and cation INTs. By

later removing the potential bias, the system can be relaxed into a charge-neutral

INT like those that form directly within floating tubes. This provides an alternative

physically realizable1 mechanism for INT formation, allowing an investigation into

the relevance of the filling dynamics on the ultimate INT structures.

6.1 Methods

6.1.1 Potential Model

Like earlier work [6], the molten salt is modeled with a Born-Mayer potential of the

form

U(rij) = Bije
−aijrij +

QiQj

rij
− C ij

6

r6ij
,

with the parameters given in Table 6.1. Qi and Qj are the formal charges of the ions,

+1 and −1 for M and X species respectively. The parameters Bij and aij modulate

1By physically realizable it is meant that this type of manipulation is within the capabilities of
the set of crude macroscopic control parameters discussed in the Introduction.
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Born-Mayer Parameters M-X M-M X-X

Bij 8.68 1.1456 61.66
aij 1.55 1.55 1.55
C6 2.09 0.0763 115.987

Table 6.1: Born-Mayer parameters for the rigid ion model used in filling simulations.
The parameters, given in atomic units, are chosen to favor a four-coordinate bulk
structure, which is expected to favor three-coordinate hexagonal two-dimensional
nets.

the atomic repulsions while C ij
6 terms tune the dispersion interaction. The salt does

not correspond to a particular metal halide, rather the values are chose to stabilize

a four-coordinate bulk structure. [70, 74] In this way the resultant structures can be

expected to be representative of some classes of MX salts while not necessarily being

in quantitative agreement with any one salt. While initial study of these INTs used

a polarizable ion model [70, 71], more recent work has shown that INT formation is

also characteristic of the simpler rigid ion model employed here. [6, 7]

Interactions between the ions and the tube are described by a simple Lennard-

Jones potential,

U(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

,

with parameters given in Table 6.2. As described elsewhere [6], these Lennard-Jones

Lennard-Jones Parameters C-M C-X

ǫij 57.9 79.4
σij 3.4025 3.735

Table 6.2: Parameters for the Lennard-Jones potential used to model interaction
between the ions and carbon atoms of the CNT. The parameters, given in degrees
Kelvin and Angströms, are taken from interactions between graphite and Noble gasses
isoelectronic to K+ and I− for C-M and C-X respectively.

parameters are taken from interactions between graphite and Noble gasses isoelec-

tronic to K+ and I−. Induced metal surfaces for the floating CNTs are treated as

outlined in Chapter 4 using the constrained conjugate gradient minimization. The

value of η was set to 1 au−1 for initial simulations on a (19,0) CNT. The (11,11) CNT

in Section 6.6 adopts the value of η given in Section 5.3.2.
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6.1.2 Equilibration

Filling simulations are initiated from an equilibrated liquid state. The equilibration

procedure is straightforward. A cubic simulation cell of an equal number of M+

and X− ions was generated (864 ions of each type in a box with side lengths of

35.7 Å). Molecular dynamics in the NPT ensemble was carried out using 25 au time

steps with the pressure barostated to zero and temperature thermostated to 800 K

(relaxation times of 6.0 ps for both the thermostat and barostat). After at least 30

ps of simulation, ions were deleted in a charge-neutral manner out of a cylindrical

section of the simulation cell to make room for an inserted CNT. The ends of the CNT

were blocked off by a partial graphite layer and at least 30 ps of NPT dynamics were

carried out to equilibrate the salt plus CNT system. Distinct equilibrated states were

generated by cutting out the cylindrical region at different times in the dynamics of

the full molten salt system. Even small changes in the ion-deletion time resulted in

different sets of deleted ions, ensuring that the final equilibrated states are statistically

independent.

6.2 Filling of a (19,0) CNT

For ease of comparison with prior results [70, 71], we begin by discussing the filling

of a (19,0) CNT treated with and without induced charges. It should be noted that

a (19,0) CNT is actually semiconducting, but these studies aim to understand the

impact of adding metallicity to the simple nonmetallic model. This can be probed

even for a tube which is not actually metallic, though the subsequent work naturally

focuses on a CNT morphology which is indeed metallic. The equilibration procedure

was carried out with both metallic (floating) and nonmetallic representations of the

(19,0) CNT using eight distinct salt configurations. Filling was initiated by abruptly

removing the graphite covers, allowing ions to enter the tube. The Coulomb liquid is

strongly ordered, so filling requires the collective motion of many ions. The typical

motif of filling is depicted in Figure 6.1a, showing a charge-neutral loop that threads

its way into the tube. Formation of this loop requires a particular class of fluctuation

in the liquid structure, and there is often a lag in the filling time due to the rareness of

this fluctuation. Once the filling is initiated it proceeds rapidly. These observations

agree with a prior report [72], and are well summarized by monitoring the number of

ions in the tube as a function of simulation time, the so-called filling profile. Com-

parison of the filling profiles between the metallic and nonmetallic models of (19,0)
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CNTs demonstrates that the inclusion of metallicity does not radically alter the fill-

ing behavior. Two of the eight metallic filing simulations have anomalously long lag

times compared to the others, but based on a more complete analysis of lag times in

the nonmetallic tubes [72], occasional long lag times are to be expected merely due

to the rare liquid fluctuations required for filling to initiate. Many more simulations

would need to be run to determine if differences between the filling profiles is actually

statistically significant, but this is not a path I chose to pursue further.
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Figure 6.1: Comparison of the filling profiles of metallic and nonmetallic (19,0) CNTs.
The rate of filling appears virtually the same. Since filling depends on initial fluc-
tuations of the ionic liquid, slow initial filling is expected and has been regularly
observed. [72] These filling simulations are not sufficient to provide a statistically
significant comparison of the average lag time and filling rates.

As is clear from the filling profile, the tubes became full after around 100 ps. The

final structures adopt INT conformations that oscillate around some local minimum

of the energy. To identify this minimum the positions of the ions inside the CNT

were averaged for the last several picoseconds of dynamics. Since the structures

are stable, the results are very insensitive to the averaging time. Common average

structures are depicted in Figure 6.2. In agreement with earlier work on nonmetallic

tubes [72], several stable tubes were observed, in this case both (4,3) and (5,2) INTs

formed within the metallic and nonmetallic tubes. As summarized in Table 6.3, the

proportion of (4,3) and (5,2) tubes was not influenced by the metallicity of the tube,

though there are far too few simulations to make any statistically significant statement

about filling of (19,0) CNTs. We will return to these considerations within (11,11)

CNTs, where a larger sample size was simulated. First, let us consider more carefully

why the metallicity effects are not more significant.

74



(a) (4,3) INT

(b) (5,2) INT

(c) (6,0) INT

Figure 6.2: Inorganic nanotube morphologies which have been observed in computer
simulation to form within (19,0) and (11,11) CNTs. Basic geometric properties of
these tubes are provided in Table 6.3.

6.3 Why Is Metallicity a Minor Perturbation for

a Floating Tube?

The charge induced on a nanotube due to a single point charge was shown in Figure

5.10. As intuition suggests, the permanent charge induces an opposite charge on the

nanotube, resulting in an attractive force. In an ionic system containing many positive

and negative point charges, the induced charge can be expected to be oscillatory in

sign, with positive induced charge closest to the anions. Since induced charge is

complementary to the ionic charge, the ions are attracted to the nanotube just as a

single ion is attracted in Figure 5.10. Why then does this attractive force seem to

have little effect on the floating metallic tube? The answer lies in the small magnitude

of the induced charges. As shown in Figure 6.4 and 6.7a, the magnitude of induced
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INT Properties
Filling Frequencies

INT (19,0) (11,11)
Radius (Å) Chiral Angle N F N F V

(4,3) 3.50 25.3 7 7 73 64 23
(5,2) 3.60 16.1 1 1 18 25 25
(6,0) 3.46 0.0 0 0 7 9 36
(6,1) 3.78 7.6 0 0 2 0 12
(4,4) 3.99 30.0 0 0 0 2 4

Table 6.3: Physical properties and frequency of observation of INTs forming inside a
(19,0) and an (11,11) CNT. The N, F, and V columns give the frequency of observa-
tion in direct filling simulations in which the CNT electronic structure was ignored
(nonmetallic), treated as a floating metal tube, and treated as a voltage biased metal
respectively. From each liquid state metallic and nonmetallic simulations were initi-
ated, but the trajectories quickly diverged such that comparisons between the metal
and nonmetal simulations must be based on the statistics of a large number of simu-
lations. INT radii are computed by the usual tube-folding procedure [Equation (1.1)]
assuming a M-X distance of 2.09 Å, the average bond distance from the simulations.
These calculations neglect the curvature of the INT. More accurate radii can be com-
puted from the asymptotic expressions of Cox and Hill’s polyhedral construction [12],
but the differences between cylindrical folding and polyhedral construction was within
the sample deviation of the computationally observed radii. The final column sums
to 99 rather than 100 because the final trajectory had not yet converged to an INT
at the time of writing.

charges is less than 0.04 au for the most charged of the metal sites during both the

initial filling stages as well as after the CNT is full. The Lennard-Jones repulsions

keep the ions about 2.2 Å from the CNT surface, which Figure 6.3 shows is roughly

equal to the average M-X bond distance. For any given ion the induced charges are

about the same distance away as the neighboring ions, which have nearly 100 times

greater charge magnitudes. It is no surprise then that given the small induced charge

magnitudes, the INT structures are not strongly affected by metallicity of the CNT.

The forces due to CNT induced charge may serve to renormalize the Lennard-Jones

parameters slightly, but the basic structures will be the same.

It remains to explain why the induced charge magnitudes are so small. As the

CNT lattice is bipartite, one could imagine the model admitting a surface charge

distribution with large charge magnitudes and anti-ferromagnetic long-range order

(AFLRO). Such a distribution would be induced by a crystalline surface due to its

alternating permanent charges. Because the induced charge would be complementary

to this crystalline surface, the crystal would be attracted, thereby inducing still greater
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Figure 6.3: Radial distribution function for the distance between M and X species.
The distribution function is computed from a box of MX liquid with a filled (19,0)
CNT inside the box. Note that the average nearest-neighbor separation is about 2.09
Å. The peak at twice this distance is skewed because it includes correlations between
ions inside and outside the tube. The fact that the skewing is minimal demonstrates
that the distance between ions and the Lennard-Jones centers roughly equals the M-X
separation.

charge magnitudes while preserving the AFLRO and the CNT charge neutrality.

Given this argument one might reasonably expect the final charge distribution to

be of this AFLRO form, yet Figure 6.4 clearly shows this is not the case. To make

sense of the simulation results one must recall that the metal sites of the model have

an on-site self-energy, which physically stems from the repulsion of electron density

confined to the Gaussian site. To obtain an order of magnitude estimate for the effect

of this on-site term we consider a minimal model for induced charge, that of a single

metal site 4 au away from a single point charge. We compute the energies in real

space for simplicity, but this can be justified as the molten salt will screen long-range

contributions. Hence the dominant energy terms for any metal site is the real-space

interaction with itself, its metal neighbors, and the nearest ions. As we seek an order

of magnitude estimate, it suffices to initially neglect metal neighbors and consider a

single ion with charge -1.

U(Q) = −Qerf (ηr)

r
+

Q2η√
2π

,

where η is as always the inverse of the Gaussian spread. The Lennard-Jones po-

tential maintains a metal-ion separation of about 4 au, so we fix r to be 4 au. For
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Figure 6.4: Molecular dynamics snapshot of an INT inside the floating (19,0) CNT.
Ions outside the CNT have been cropped out for clarity, but they also influence the
induced charge. Anions are shown in red, cations in green, positive induced charge
in blue, and negative induced charge in yellow. The induced charge magnitudes are
indicated by the radius of the plotted ball. This is just a plotting tool as all of the
metal sites share the same Gaussian spread. For reference the largest yellow ball
corresponds to an induced charge of -0.0376 au.

our values of η, erfc(4η) ≈ 1, so the energy minimizing value of Q is easily found

to be Q ≈
√
2π/(8η). For η = 1 au−1, the value used for (19,0) CNT simulations,

the induced charge in this reduced model is Q ≈ 0.31 au. While this is a full or-

der of magnitude greater than any of the observed induced charges, the result was

obtained by neglecting neighboring metal sites, which are closer to each other than

to the ions. The single ion of our reduced model would also induce charges in the

neighboring metal sites, which would reduce the value of Q on any one site, at least

within the regime of the metal-ion distance we have considered. This simplified model

demonstrates that the small magnitudes of induced charges can be thought of as a

consequence of the on-site energy, but this on-site energy is linearly related to the

parameter η. Does this mean a poorly chosen value of η will scale the total induced

charge? The answer is no. The magnitudes of the Gaussians of charge can be ex-

pected to scale, but this scales both the positive and negative induced charges. As

detailed in Chapter 5, this is not to say that η does not matter, but its influence is

not as catastrophic as it may first appear.

The on-site energy arises from the microscopic features of the model (the fact

that charge density is locally described by Gaussians). The microscopic aspects of

the model, however, are the most tenuous, so it is conceivable that the observations

are sensitive to the model. Luckily there exists another physical reason to expect
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AFLRO to be broken up, namely the incommensurability of lattices. The C-C bond

lengths are incommensurate with the M-X lengths. As such, the metal sublattices

cannot perfectly complement the salt crystal sublattices. Even if the crystal were

commensurate with the carbon lattice, the carbon sites also interact with salt ions

outside the tube. These ions are disordered, but even if they were not, the cylin-

drical geometry actually precludes both internal and external structures from being

simultaneously commensurate with the metal lattice.

6.4 Are the Dynamics Overdamped?

Given that metallicity is not a dominant factor for floating CNTs, we temporarily

revert to the nonmetallic CNT model to try to better understand why several distinct

INTs are formed. Wilson’s analytic model approximates the energy of the different

nanotubes as a function of the difference between CNT and INT radii. [70] The

discrete set of INT morphologies restrict the radii to a finite number of possible radii,

andWilson’s expression allows one to estimate the relative energies of these structures.

If the systems were in thermal equilibrium, one would expect the distribution of

structures to satisfy the Boltzmann distribution, heavily favoring the observation of

the lowest energy INT structures. While it has been observed that only relatively

low energy INTs are formed, the frequency of observations of each morphology does

not obey the Boltzmann distribution. As an extreme example Wilson noted that

the analytic model predicts the formation of (7,0) and (5,3) INTs formed within

(12,12) CNTs to be isoenergetic, yet the (5,3) INT is observed to form far more

frequently.2 Estimating the free energies by approximating the entropic contribution

of INT vibrational modes does not account for the observed distribution, as the

vibrational entropies of the different INTs are nearly equal. [72]

Given these observations one must conclude that the system is not in equilibrium

or that an entropic contribution is not being included in the free energy estimates.

The former is very plausible given the modest simulation times and large barriers to

interconversion between the INTs. The metastable structures that result are merely

local minima in which the dynamics are trapped for all reasonable simulation time

scales. Which minimum is discovered depends on the course of the dynamics, not on

equilibrium properties. Within this view of INT formation, it is desirable to identify

a growth mechanism, which would illustrate the characteristic atomic motions that

2Wilson’s simulations actually examined filling of (12,12), (21,0), (13,1), (14,10), (15,9), and
(18,5) CNTs, all of which have radii between 16.30 and 16.47 Å. For simplicity I just mention the
(12,12) result, but the observations are even more general.
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result in the approach of a given minimum. Generally this mechanism can be thought

of as a curve through configuration space connecting the structures of the initial and

final states in the most likely manner - in other words it is the minimum free energy

path (MFEP). Hamiltonian dynamics, however, exists in phase space, not position

space, so a minimum energy path lies in the full phase space. That is to say that a

mechanism is not fully provided by the sequential positions of the degrees of freedom,

it also includes the sequential momenta. While the MFEP is formally embedded in

the full phase space, it is often the case that the momentum contributions average

out. The positions can carry the relevant information such that the dynamics starting

at (~x, ~p1) is essentially identical to the dynamics starting at (~x, ~p2). When this is the

case we say the system is overdamped.

Overdamped dynamics are easier to deal with because one can then discuss an

intuitive picture of a mechanism as the “movie” of the atomic coordinates. Using this

approach Wilson suggested that the relative lack of (n, 0) INTs could be explained

by the initial filling mechanism of the simulation. [72] To further probe this hypoth-

esis it is essential to determine whether or not the dynamics is overdamped. More

explicitly, we must determine whether or not information of the atomic coordinates

(but not momenta) after some initial filling dynamics is sufficient to determine the

final structure. The procedure is quite simple. We select two trajectories from the

previously described filling of a (19,0) CNT - one trajectory which formed a (4,3)

INT and one which formed a (5,2) tube. Every 30.2 ps of that trajectory we copy the

atomic positions and spawn 20 replicas, which are given random momenta consistent

with the Maxwell-Boltzmann distribution. We then carry out the dynamics of these

replica until they form INTs. A schematic of the procedure for the (4,3) trajectory is

given in Figure 6.5. The full results, summarized in Table 6.4, demonstrate that the

early dynamics does not definitively bias the trajectory to a single local minimum.

Even when the tube is nearly full, introducing a dynamical time step with randomized

velocities is enough of a kick to push the system into a different basin of attraction.

The final tubes are in fact stable and can be well-defined by atomic positions alone,

as evidenced by the fact that replicas which split off at late times (after the INT was

already formed in the parent trajectory) always formed the same INT as the parent.

In contrast, the momenta clearly matter for earlier dynamics, so it is dangerous to

think of the system in terms of an overdamped mechanism. Put another way, the

initial filling mechanism correlates poorly with the INT that eventually forms.
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Figure 6.5: Schematic diagram of the series of filling experiments summarized in Table
6.4a. The line across the top represents the original trajectory, which formed a (4,3)
tube. The thick arrows represent twenty replicas, each starting with the positions
of the original trajectory but with randomized velocities drawn from the Maxwell-
Boltzmann distribution. The same procedure was carried out on a trajectory which
formed a (5,2) tube, the results of which appear in Table 6.4b.

6.5 Potential Biased Growth in a (19,0) Tube

It is clear that there exist several competing metastable states, so it is unlikely that

a CNT can serve as an effective template that selectively grows a single INT mor-

phology. The filling simulations on floating tubes have shown that adding metallicity

to the model does not significantly alter the competition between metastable INTs.

There remains one more control parameter that can be macroscopically adjusted in

a metallic tube. If the CNT were attached to a lead, a potential bias could be added,

effectively dumping extra electrons onto the CNT (or removing them). The addition

of this bias is natural within the mathematical framework of the metal model, though

the neutrality of the simulation cell is broken as discussed in Section 5.2.3. Carrying

out the dynamics in the NVT ensemble with a +10 V bias on the tube results in rapid

filling as the excess positive charge on the tube attracts X− ions so strongly that they

enter the tube without regard to charge-neutrality. These anions wet the inside of

the tube, thereby attracting the cations to form a concentric tube. A filling profile in

Figure 6.6 demonstrates the rapidity of this filling relative to unbiased-CNT filling of
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Time of Random Ions in CNT at Final Structure
Perturbation (ps) Perturbation Time (4,3) (5,2) (6,0)

30.2 16 17 2 1
60.5 64 19 1 0
90.7 77 20 0 0
120.9 77 20 0 0

(a) Perturbations on a trajectory which formed a (4,3) INT

Time of Random Ions in CNT at Final Structure
Perturbation (ps) Perturbation Time (4,3) (5,2) (6,0)

30.2 20 14 6 0
60.5 75 8 11 1
90.7 79 0 20 0
120.9 78 0 20 0

(b) Perturbations on a trajectory which formed a (5,2) INT

Table 6.4: To probe whether or not the system is overdamped, velocities were ran-
domized at four equally spaced points in time along two different trajectories. In the
absence of the randomized velocities the two trajectories led to a (4,3) INT and a
(5,2) INT. The tables indicate the time along the original trajectory at which the
velocities were perturbed, the number of ions that were inside the CNT at this time,
and the number of subsequent trajectories out of twenty which converged to (4,3),
(5,2), and (6,0) structures. The significance of the velocities on the final structure
indicates that the dynamics, even when the CNT is nearly full, cannot be thought of
as overdamped.

Figure 6.1.

A snapshot of the filling mechanism (Figure 6.7b) reveals that the initial filling

does not proceed via a charge-neutral loop. Wilson’s proposed mechanism for explain-

ing the lack of (6,0) INTs is based upon these charge-neutral loops, so voltage-biased

filling provides a route to test the hypothesis that kinetic effects account for the dis-

tribution of INTs. By filling the tube under voltage bias then removing that bias to

allow the structure to relax into an INT, a distinct physically-motivated mechanism

can be probed to see if that mechanism is significant in the final INT structures. In

the next sections this is done with the filling of an (11,11) CNT.

6.6 Filling of an (11,11) CNT

To generate more statistically significant results the aforementioned experiments were

repeated with an (11,11) CNT, which is metallic and has nearly the same radius as
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Figure 6.6: Filling profile of a +10 V biased (19,0) CNT. Note that the initial filling is
far more rapid that the filling of an unbiased tube since the initial filling mechanism
is no longer dependent on collective motions. The addition of charge on the CNT
breaks the charge-neutrality of the filling ions. This is seen by comparing the filling
profiles of the X− ions (red) and the filing profile of the M+ ions (green). The black
curve is the profile of the total number of ions.

the (19,0) tube. All filling simulations were performed in the NVT ensemble for

consistency. Metallic Gaussian charges with η = 5.0 Å−1 were used in accordance

with the results of Section 5.3.2. One hundred independent liquid configurations were

generated and equilibrated as described in Section 6.1.2. Configurations had roughly

700 ions of each species in a box with side lengths of about 35.0 Å. To ensure rapid

filling, extra ions were added for a total of 800 of each species. This was performed by

increasing the box size then using NPT dynamics to compress it to a final box length of

33.0 Å. Because the virials for the charged systems have not been calculated, the NPT

dynamics occurred without a voltage bias. After the simulation cell was compressed,

three copies of the system were equilibrated for 15 ps: one with a nonmetallic tube,

one with a floating tube, and one with +10 V applied to a metallic tube. Following

the equilibration the graphite layers covering the tube ends were removed to initiate

filling as described for the (19,0) CNT. In the case of the nonmetallic and floating

CNTs, 120.9 ps of dynamics was simulated to yield stable CNTs. In rare cases3

the initial CNT filling was especially slow such that 120.9 ps of dynamics was not

sufficient to yield a stable structure. In these cases the simulations were continued

until a stable INT was obtained. Dynamics on the voltage-biased tubes were also

carried out for 120.9 ps to yield structures that will be discussed further in the next

3Four such cases for the nonmetallic tube
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(a) Floating CNT

(b) +10 Volt CNT

Figure 6.7: Comparison of the filling mechanisms of floating and +10 V biased (19,0)
CNTs. The floating tube fills with a charge neutral loop, which is topologically
constrained and could potentially direct the crystallite away from particular INT
morphologies [72]. The voltage biased filling is less constrained as it is based upon
independent fragments. The relative importance of initial filling mechanisms can be
probed by comparing the structures arising from these two types of fillings. Green
and red circles represent M and X respectively. Blue (yellow) circles denote positive
(negative) charge, with the magnitude indicated by the circle’s radius. The induced
charges are scaled different between the two figures for ease of viewing. The largest
yellow circle in (a) corresponds to a -0.0359 au Gaussian charge while the largest blue
circle in (b) is a 0.2643 au Gaussian charge. The apparent difference in ion density
is due to the fact that the potential-biased tube fills much more rapidly, thereby
depleting the ions near the opening of the tube faster than they can be replaced by
the surrounding bath.
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section. These structures were then relaxed by grounding the tube (V = 0) to yield

the ordinary INTs after about 50 ps of dynamics. The fraction of tubes forming

each of the INT morphologies from these three growth procedures were tabulated

and can be found in Table 6.3. The results unequivocally demonstrate that the INT

fractionation is heavily influenced by kinetic factors. Alternative paths to the same

final values of the control parameters (V = 0, T = 800 K) yield different distributions,

showing that equilibrium free energy considerations cannot fully describe the results

of such simulations.

6.6.1 Concentric INTs in a voltage-biased CNT

Simulations of the filling of (11,11) CNTs with a +10 V bias reveal that the ions crys-

tallize into concentric INTs. The CNT wall is wetted by an tube composed entirely

of anions, which are spaced on a hexagonal lattice so as to minimize the repulsions

between like ions. This lattice is folded into a tube, which can be characterized in

exactly the same manner as the charge-neutral MX tubes. The only difference is that

the tube contains only one of the two hexagonal sublattices. Efficient charge-ordering

causes a smaller cationic INT to form within the anionic INT, which again can be

thought of structurally as the other hexagonal sublattice folded into a tube. The

two INTs are not, however commensurate, a fact made clear by the fact that there

are unequal numbers of anions and cations in the CNT. Within the cationic INT

forms an ordered chain of anions and cations. These structures are all depicted for

a single filling simulation in Figure 6.8. The outer tube is a (6,1) structure while

the inner is a (5,1). This lack of commensurability comes at an energetic cost since

it prevents a one-to-one pairing of anions and cations. The cost is balanced by the

benefit of placing as many anions as possible near the positively charged CNT wall.

The INTs result from mutual repulsion of all the anions forcing themselves into a

packed, symmetric structure. Future work will focus on further characterizing these

concentric INTs. It will also be interesting to probe the impact of these structures on

the electrochemical response of a nanotube immersed in a molten salt. The relative

stability of these INT may well introduce significant hysteresis into the capacitance,

something which has been briefly explored using molecular dynamics simulation by

Vatamanu et al. [64] and which could also be probed experimentally.

In floating tubes the total charge on the CNT was zero, introducing a symmetry

between positive and negative induced charges. This symmetry ensures that for

any given site, the expectation value for the charge is zero (baring some AFLRO

as described earlier). The variance of these charges does, however, depend on the
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(a) Cross-sectional view of simulation cell (b) X− (6,1) tube, M+ (5,1) tube, and MX2 chain

Figure 6.8: Molecular dynamics snapshot of filled +10 V CNT. The systems were
equilibrated for 45 ps then the ion positions were averaged for 15 ps of additional
dynamics to yield the equilibrium internal structures shown in (b). The anions,
which are strongly attracted to the excess positive charge on the CNT, wet the inner
wall. In repelling each other, the anions adopt a highly symmetric configuration - that
of a (6,1) INT. The cations form the same type of structure inside the anion tube,
but as the cations have a smaller surface area to wet, they form a smaller (5,1) tube.
These two tubes are not commensurate, indicating that the radial charge ordering
is more important than the pairing between INT anions and cations. Inside the
cationic INT rests an MX2 chain. Early work suggests that unlike the charge-neutral
INTs of Figure 6.2, defects in these INTs are common. The defects could arise from
the competition between radial charge ordering induced by the CNT charge and the
energetic benefit of local commensurability of the M+ and X− tubes. More work is
required to determine if these defects anneal out.

position of the metal site along the CNT axis. Due to their smaller connectivity,

edge sites tend to support greater charge magnitudes, explaining the greater charge

variance. In voltage-biased tubes the charge symmetry is broken, so the reduced edge

site connectivity causes extra charge to build up on the tube ends. These effects,

displayed in Figure 6.9, are greatly reduced in physical CNTs, which are much longer

than the simulated variety. In the short, simulated CNTs the edge effects take on

greater importance. Still, Figure 6.9 shows that the anomalously large charge building

up on the tube ends decays rapidly along the tube length. INT structures in the

middle of the CNT can therefore reasonably be treated as good approximations for

structures within longer, more physically realistic tubes.
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Figure 6.9: Induced charge as a function of position along the CNT axis. Floating
CNTs have zero average charge since the symmetry makes any given site as likely
to be positive as negative. The standard deviations of these charge distribution,
however, have a weak dependence on the z position, with the end sites more likely to
build up charges with larger than average magnitudes. The same broadening of the
standard deviations occurs at the ends of the voltage-biased tube, but additionally
the average charges deviate significantly since the bias breaks the symmetry.

6.7 Conclusions and Discussion

The simulations presented herein, though simple in nature, reveal the fundamental

features of INT formation. The distinct INTs are local minima of free energy, each of

which can trap the trajectory for times at least on the order of 100 ps (the computa-

tionally accessible timescale). The significant rearrangement required to interconvert

between INTs suggests that the lifetime of the local minima could be effectively in-

finite such the multiple structures could all be experimentally observed. We have

shown, however, that predicting which INT forms from a given trajectory is not

possible due to the heavily chaotic nature of the dynamics (see for example Table

6.4). This forced us to consider only probability distributions of INT morphologies,

which were shown to be functions of the path, not just the thermodynamic state. As

path functions, these distributions could be altered by changing the trajectory of the

control parameters.4 From a technological viewpoint, it would be optimal to have

4The trajectory of the control parameters is given by the time-dependence of the macroscopic
physically tunable objects like temperature, pressure, voltage bias, etc.
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paths that result in the synthesis of pure INTs, but we have argued that the rugged

energy landscape makes that possibility exceedingly unlikely. Baring the ability for

pure synthesis, it is useful to be able to control the distribution of products so as to

simplify the subsequent purification. For example, if one wanted to produce a (4,3)

INT, the floating procedure is clearly favorable, whereas generating (6,0) INTs would

more wisely be accomplished via the voltage-biased procedure.

The sensitivity to path also significantly challenges the theoretical understanding

of these systems. It is far more difficult to adequately sample trajectory space as

compared to configuration space. For equilibrium systems the relevant free energies

could be computed via a metadynamics approach, but this is not an option for our

path-dependent distributions. As such, experimental procedures should be most use-

ful for understanding the effect of control parameter paths on the INT distributions.

The major contribution that theory can make to this problem is merely to observe

that the path will matter and that this fact could be utilized for technological gain.

In closing, let us identify an area of future work which may not suffer from the same

computational and theoretical difficulties. Chaotic dynamics and incomplete sampling

complicate the study of long-time events such as CNT filling, but the voltage-biased

studies present some potentially fruitful areas of future work that could bypass these

challenges. Rather than study the filling of the CNT, the response of an already filled,

voltage-biased CNT electrode to modulations in the applied potential could be of great

interest. Many of the interesting phenomena would occur on more rapid timescales,

perhaps allowing for more mechanistic descriptions of the electrolyte response. These

experiments - both physical and computational - would be of great interest since the

CNT electrode is sufficiently small that a full double layer of the electrolyte cannot

even be contained in the tube. Novel capacitive behavior may well result, particularly

given the hysteresis that could be expected to arise from the relative stability of the

INTs described in Section 6.6.1. However interesting, the future work is indeed future

and will have to wait for another thesis and another time.
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Appendix A

Gaussian Charge Ewald with the
Convergence Factor Included

We now revert back to Equation (3.28) to deal with the convergence factor fully.1

Application of Equation (3.12) with r = rij + r′′ − r′ gives

U(s) =
1

2 (2π)6
√
π

∫ ∞

0

dt

∫

R3

dr′
∫

R3

dr′′
∫

R3

dv

∫

R3

dw t−1/2
∑

i,j

QiQj

× exp

[

−st |rij + r′′ − r′|2
t+ s

]

∑

n

exp

[

− (s+ t)

∣

∣

∣

∣

n+
t (rij + r′′ − r′)

t+ s

∣

∣

∣

∣

2
]

× exp

[

−|v|
2

4η2
+ iv · r′

]

exp

[

−|w|
2

4η2
+ iw · r′′

]

(A.1)

Now the Jacobi imaginary transformation [Equation (3.11)] can be applied to give

U(s) =
π

2(2π)6abc

∫ ∞

0

dt

∫

R3

dr′
∫

R3

dr′′
∫

R3

dv

∫

R3

dw t−1/2 (s+ t)−3/2
∑

i,j

QiQj

× exp

[

−st |rij + r′′ − r′|2
s+ t

]

exp

[

−|v|
2

4η2
+ iv · r′

]

exp

[

−|w|
2

4η2
+ iw · r′′

]

×
∑

k

exp

[

− |k|2
4 (s+ t)

]

exp

[

itk · (rij + r′′ − r′)

t+ s

]

(A.2)

1A more compact version of this derivation is performed in a paper that has been submitted to
Chemical Physics Letters
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We first will integrate over r′ and r′′. The x, y, and z parts of these integrals are

separable.

U(s) =
π

2(2π)6abc

∫ ∞

0

dt

∫

R3

dv

∫

R3

dw t−1/2(s+ t)−3/2
∑

i,j

QiQj exp

[

−|v|
2 + |w|2
4η2

]

×
∑

k

exp

[

− |k|2
4(s+ t)

]

IxIyIz, (A.3)

with

Ix =

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′ exp

[

− st

t+ s
(xij + x′′ − x′)

2

]

× exp

[

i

{

(vxx
′ + wxx

′′) +
kxt

t+ s
(xij + x′′ − x′)

}]

(A.4)

This integral is fairly standard and can be taken by transforming into the combined

and relative positions. We let x′′−x′ = xα and x′′+x′ = xβ. Equivalently x′ =
xβ−xα

2

and x′′ =
xβ+xα

2
. In terms of these new variables,

Ix =

∫ ∞

−∞
dxα

∫ ∞

−∞
dxβ exp

[

− st

s+ t
(xij + xα)

2 + i

(
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(
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2

)

+ wx

(
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2

))]

× exp
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i
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)]

(A.5)

Integrating over dxβ first returns a δ-function by (3.30).

Ix =

∫ ∞

−∞
dxα2πδ

(
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2

)

exp

[

− st

s+ t
(xij + xα)

2

]
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[

i
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2
+
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}]
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2
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i
2
xij(wx−vx) (A.6)

Now let x = xij + xα to give a standard Gaussian integral, which can be computed

with the normal trick of completing the square.

Ix = 2πδ (vx + wx) exp

[

− ixij (wx − vx)

2

] ∫ ∞

−∞
dx exp

[

− stx2

s+ t
+ i

(
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2
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x

]

=

√
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[

− ixij (wx − vx)

2
− [(s+ t) (vx − wx)− 2tkx]

2

16st (s+ t)

]

(A.7)

90



Because Iy and Iz are of the identical form, the three integrals recombine neatly as

the vector relation

IxIyIz =

(

π (s+ t)

st

)3/2

(2π)3 δ (v +w) exp

[

− irij · (w − v)

2
− |(s+ t) (v −w)− 2tk|2

16st (s+ t)

]

(A.8)

Inserting this expression back into Equation (A.3) and using the three dimensional

δ-function to eliminate the integral over w,

U(s) =
π

2 (2π)6 abc

∫ ∞
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dt
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∑
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]

(A.9)

The remaining integral is a three dimensional Gaussian integral over v. For clarity,

it can also be split up into three separable integrals.

U(s) =
π5/2

2 (2π)3 abc

∫ ∞

0

dt t−2s−3/2
∑
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QiQj

∑

k
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z, (A.10)

where

I ′x =
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]
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As before this can be expressed compactly in vector form.

I ′xI
′
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(A.12)
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Inserting this expression back into Equation (A.10) gives

U(s) =
πη3
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∫ ∞
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Now consider the change of variables t′ = η2t/ (2t+ η2), inspired by the s = 0 trans-

formation used in Section 3.4. When the transformation was first invoked, it was

observed that t−2dt = t′−2dt′. It is useful to develop a few other properties of this

particular transformation. Note first that the transformation can be inverted to give

t = η2t′/ (η2 − 2t′). Algebraic manipulation also yields

2st+ (s+ t)η2 =
2sη2t′

η2 − 2t′
+

sη4 − 2sη2t′
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+

η4t′
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=
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. (A.14)

Using (A.14) and some more algebra, gives three more useful relations.
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2t+ η2

4 (2st+ (s+ t) η2)
=

(2t+ η2) (η2 − 2t′)

4 (s+ t′) η4

=
η2t (η2 − 2t′)

4t′ (s+ t′) η4

=

(

t

4 (s+ t′)

)(

η2 − 2t′

t′η2

)

=

(

t

4(s+ t′)

)(

1

t

)

=
1

4(s+ t′)
(A.17)
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Using these properties to convert the integration from t to t′, one obtains

U(s) =
π

2abc

∫ η2/2

0

dt′ t′−1/2(s+ t′)−3/2
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(A.18)

The integrand is identical to that of Equation (3.14) combined with Equation (3.19)

(the k = 0 term). The only difference is the upper bound of integration, which has

changed from α2 to η2/2. Equation (A.18) can then be computed in the s→ 0 limit

with the results of equations (3.17) and (3.21).

lim
s→0

U(s) =
1
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(
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QiQj |rij|2 , (A.19)

which is precisely the result of Equation (3.33) from the naive s→ 0 approach. As in

Equation (3.33), this energy is entirely in reciprocal space, so we introduce a partition

of the t′ integration at α2. Since the integrand of Equation (A.18) is of the same form

as the integrand of equations (3.14) and (3.19), it follows that inverting the Jacobi

imaginary transformation will yield an integrand of the form of Equation (3.8).
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The s→ 0 limit is trivial since it is independent of the integration. Hence Equation

(3.35) is confirmed to be the correct s→ 0 limit. In summary,

U = lim
s→0

U(s) =
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exactly as found with the naive s→ 0 calculation.
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Appendix B

Gaussian Charge Ewald with 2d
Periodic Replication

Study of interfaces, particularly charged interfaces, requires the simulation cell to

adopt a slab geometry. The calculation of the electrostatic energy of a slab was

reported by de Leeuw and Perram assuming point charges. [14] The calculation was

extended to Gaussian charges by Reed et al. [40] Reed’s derivation is nearly correct,

but a critical algebraic error causes his reported energy to actually just be the energy

of a point charge system plus the self-interaction energy of each Gaussian charge. Here

the entire derivation is reproduced, corrected, and (hopefully) made more clear. For

greatest clarity, the reader is strongly urged to first review the Gaussian calculation

with three periodically replicated directions of Sections 3.3, 3.4, and 3.5.

The Coulomb energy can be written down in a straightforward manner including

a Gaussian normalization and a factor of 1/2 to prevent double counting.

U =
η6

2π3

∑

i,j

∞
∑

k,l=−∞

∫

dr′
∫

dr′′
qi exp

(

|r′ − ri|2 η2
)

qj exp (|r′′ − rj| η2)
|rij + r′′ − r′ + ka+ lb| (B.1)

Proceeding in the same manner as for the system periodic in three dimensions,

U =
π3/2

2 (2π)6
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+ iv · r′
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2

4η2
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]

, (B.2)

which is (3.28) with s = 0 and no periodic replicas in the z direction. By completing
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the square, it can be observed that

1
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(B.3)

This identity is applied to the exponential of the z coordinate in Equation (B.2).
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∫

R3

dv

∫

R3

dw

∫ ∞

−∞
du t−1

∑

i,j

∞
∑

k,l=−∞
qiqj

× exp

[

−t (xij + x′′ − x′ + ka)
2 − t (yij + y′′ − y′ + lb)

2 − u2

4t
+ iu (zij + z′′ − z′)

]

× exp

[

−|v|
2

4η2
+ iv · r′

]

exp

[

−|w|
2

4η2
+ iw · r′′

]

(B.4)

Application of the Jacobi imaginary transformation, Equation (3.11), to the x and y

exponentials gives (A7) of Reed et al. [40]

U =
1

4ab (2π)6

∫ ∞

0

dt

∫

R3

dr′
∫

R3

dr′′
∫

R3

dv

∫

R3

dw

∫ ∞

−∞
du t−2

∑

i,j

∞
∑

k,l=−∞
qiqj

× exp

[

−π2k2

a2t
+

i2πk

a
(xij + x′′ − x′ + ka)− π2l2

b2t
+

i2πl

b
(yij + y′′ − y′ + lb)

]

× exp

[

−u2

4t
+ iu (zij + z′′ − z′)

]

exp

[

−|v|
2 + |w|2
4η2

+ i (v · r′ +w · r′′)
]

(B.5)

As in the case of three dimensional replication, we use Equation (3.30) to integrate

over r′ and r′′.

U =
1

4ab

∫ ∞

0

dt

∫

R3

dv

∫

R3

dw

∫ ∞

−∞
du t−2

∑

i,j

qiqj

∞
∑

k,l=−∞
exp

[

−|v|
2 + |w|2
4η2

]

× exp

[

−π2k2

a2t
+

i2πkxij

a

]

exp

[

−π2l2

b2t
+

i2πlyij
b

]

exp

[

−u2

4t
+ iuzij

]

× δ

(

vx −
2πk

a

)

δ

(

vy −
2πl

b

)

δ (vz − u)δ

(

wx +
2πk

a

)

δ

(

wy +
2πl

b

)

δ (wz + u)

(B.6)

Integration over v and w is now trivial on account of the delta functions.

U =
1

4ab

∫ ∞

0

dt

∫ ∞

−∞
du t−2

∑

i,j

qiqj

∞
∑

k,l=−∞
exp

[

−π2k2

a2

(

1

t
+

2

η2

)

+
i2πkxij

a

]

× exp

[

−π2l2

b2

(

1

t
+

2

η2

)

+
i2πlyij

b

]

exp

[

−u2

4

(

1

t
+

2

η2

)

+ iuzij

]

, (B.7)
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which is just (A10) of Reed. It is at this point that we depart slightly from Reed’s

approach. Reed partitioned the integral over t into an integral over [0, α2] and another

over [α2,∞). Rather than partitioning immediately, we first change variables from t

to t′ as in Equation (3.31).

U =
1

4ab

∫ η2/2

0

dt′
∫ ∞

−∞
du t′−2

∑

ij

qiqj

∞
∑

k,l=−∞
exp

[

−π2

t′

(

k2

a2
+

l2

b2

)]

exp

[

i2π

(

kxij

a
+

lyij
b

)

− u2

4t′
+ iuzij

]

(B.8)

Now we partition the t′ integral at α2 so that the [0, α2] and
[

α2, η
2

2

]

terms can be

treated in reciprocal and real space respectively.

U =
1

4ab

∫ α2

0

dt′
∫ ∞

−∞
du t′−2

∑

i,j

qiqj
∑

κ 6=0

exp

[

−
(

|κ|2 + u2
)

4t′
+ i
(

κ · ρij + uzij
)

]

+
1

4ab

∫ α2

0

dt′
∫ ∞

−∞
du t′−2

∑

i,j

qiqj exp

[

−u2

4t′
+ iuzij

]

+
1

4ab

∫ η2/2

α2

dt′
∫ ∞

−∞
du t′−2

∑

i,j

qiqj
∑

κ

exp

[

−
(

|κ|2 + u2
)

4t′
+ i
(

κ · ρij + uzij
)

]

≡ Ua + Ub + Uc, (B.9)

where κ =
(

2πk
a
, 2πl

b

)

and ρij = (xij, yij). Because the κ = 0 term diverges, it is

treated separately.

At this point there are two clear differences from Reed. First, the partition is

different, but this partition is merely a computational tool. If the sums are not trun-

cated, then the energy is entirely independent of the partition. One is free to shift the

partition as desired such that the optimal convergence of the sums can be achieved.

Later it will be clear why partitioning of t′ at α2 is advantageous. The second differ-

ence is the upper limit of integration. Reed’s result is simply incorrect. An algebraic

error was made in the transformation from t to t′, and this error significantly affects

the form of the final result.1 In fact, the error serves to remove the Gaussian nature

of the charge, treating everything instead as point charges.

1The degree to which the error affects numerical results depends on the parameters of the simu-
lation cell. It is quite possible that in some practical situations the error’s impact is negligible.
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B.1 Ua(s)

First we consider the κ 6= 0 contribution of the reciprocal space term.

Ua =
1

4ab

∫ α2

0

dt′
∫ ∞

−∞
du t′−2

∑

i,j

qiqj
∑

κ 6=0

exp

[

−|κ|
2 + u2

4t′
+ i
(

κ · ρij + uzij
)

]

The integral over t′ is trivial.

Ua =
1

4ab

∑

i,j

qiqj
∑

κ 6=0

exp
(

iκ · ρij

)

exp

(

−|κ|
2

4α2

)

∫ ∞

−∞
du

exp
[

−
(

u2

4α2

)

+ iuzij

]

[

|κ|2
4

+ u2

4

]

=
1

ab

∑

i,j

qiqj
∑

κ 6=0

exp
(

iκ · ρij

)

exp

(

−|κ|
2

4α2

)

∫ ∞

−∞
du

exp
[

−
(

u2

4α2

)

+ iuzij

]

|κ|2 + u2

=
1

ab

∑

κ 6=0

∫ ∞

−∞

du

|κ|2 + u2
exp

(

−u2 + |κ|2
4α2

)∣

∣

∣

∣

∣

∑

i

qi exp
[

i
(

κ · ρij + uzi
)]

∣

∣

∣

∣

∣

2

=
1

ab

∑

κ 6=0

∫ ∞

−∞

du

|κ|2 + u2
exp

(

−u2 + |κ|2
4α2

)

|S (κ, u)|2 , (B.10)

with S (κ, u) ≡ ∑i qi exp
[

i
(

κ · ρij + uzi
)]

. This is exactly the form of the energy

one would expect with a point charge system periodic in two directions. Of course

the energy of the Gaussian system is not the same as that of a point charge system,

but this difference is entirely handled in the real space part part of the energy. This

makes sense because it is only at short range that point charges look different from

Gaussians.

One can also compute the integral over u of Equation (B.10), but doing so will

require knowing all of the rij . Therefore the computation scales like N2. For this

reason Kawata and Mikami have suggested that numerical integration of the O(N)

structure factor will be advantageous. For completeness, we now compute the final

integral to get a closed form O(N2) solution.

Ua =
1

ab

∑

i,j

qiqj
∑

κ 6=0

exp
(

iκ · ρij

)

exp

(

−|κ|
2

4α2

)

∫ ∞

−∞
du

exp
[

−
(

u2

4α2

)

+ iuzij

]

|κ|2 + u2

But as shown in Equation (B.3),

exp

(

− u2

4α2

)

=
α√
π

∫ ∞

−∞
dt exp

(

−α2t2 + itu
)

.
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Using this alternative representation of the exponential,

Ua =
α

ab
√
π

∑

i,j,κ 6=0

qiqj exp
(

iκ · ρij

)

exp

(

−|κ|
2

4α2

)

∫ ∞

−∞
dt

∫ ∞

−∞
du

exp [−α2t2 + iu (zij + t)]

|κ|2 + u2

The integral over u is performed first using a semicircular contour of infinite radius.

The integrand has simple poles at u = ±i |κ|. Whether the upper half plane (UHP) or

lower half plane (LHP) contour is used depends on the exponential in the integrand,

which will vanish in one half-plane and explode in the other. Observe that if zij+t > 0

the integrand vanishes for u in the UHP, whereas if zij + t < 0 the integrand vanishes

in the LHP. This means that the integral over tmust be split into these two cases. The

Cauchy Residue Theorem is now simply applied as the radial contour’s contribution

vanishes in the R→∞ limit.

Ua =
α

ab
√
π

∑

i,j

qiqj
∑

κ 6=0

exp

(

−|κ|
2

4α2
+ iκ · ρij

)

×
[

−
∫ −zij

−∞
dt e−α2t2 2πi exp [|κ| (zij + t)]

−i |κ| − i |κ| +

∫ ∞

−zij

dt e−α2t2 2πi exp [− |κ| (zij + t)]

i |κ|+ i |κ|

]

We consider the first of these integrals.

I1 ≡
∫ −zij

−∞
dt

α√
π
exp

[

−α2t2
] 2π exp (|κ| (zij + t))

2 |κ|

=
πα exp (|κ| zij)

2 |κ|

(

2√
π

)∫ −zij

−∞
dt exp

[

−α2t2 + |κ| t
]

=
πα exp (|κ| zij)

2 |κ|

(

2√
π

)∫ −zij

−∞
dt exp

[

−
(

αt− |κ|
2α

)2
]

exp

[

|κ|2
4α2

]

=
π exp (|κ| zij)

2 |κ| exp

[

|κ|2
4α2

]

(

2√
π

)∫ −αzij− |κ|
2α

−∞
dv exp

[

−v2
]

=
π exp (|κ| zij)

2 |κ| exp

[

|κ|2
4α2

]

erfc

[

αzij +
|κ|
2α

]

The second integral can be handled analogously to give

Ua =
π

2ab

∑

i,j

qiqj
∑

κ 6=0

exp
(

iκ · ρij

)

|κ|

[

exp (− |κ| zij) erfc
( |κ|
2α
− αzij

)

+exp (|κ| zij) erfc
( |κ|
2α

+ αzij

)]

(B.11)
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B.2 Ub(s)

Now we consider the divergent κ = 0 term. This really should be done carefully with

a convergence factor imposing a radial order of summation, but for now the slightly

sloppy approach of de Leeuw and Perram suffices. [14] The complete convergence

factor calculation for a point charge system is carried out by Bródka et al., justifying

the result of this lax derivation. [26]

Ub =
1

4ab

∫ α2

0

dt′
∫ ∞

−∞
du t′−2

∑

i,j

qiqj exp

[

−u2

4t′
+ iuzij

]

=

√
π

2ab

∫ α2

0

dt′ t′−3/2
∑

i,j

qiqj exp
(

−z2ijt
)

=

√
π

2ab

∑

i,j

qiqj

[

∫ α2

0

dt′ t′−3/2
[

exp
(

−z2ijt
)

− 1
]

+

∫ α2

0

dt′ t′−3/2

]

(B.12)

While the second term diverges, it is also multiplied by
∑

i qi, which is zero for a

neutral system. The use of convergence factors can formally justify the fact that this

term will vanish in a charge neutral system. The argument is analogous to the one

used to compute U3 in Section 3.2.3.

Ub =

√
π

2ab

∫

i,j

qiqj

∫ α2

0

dt′ t′−3/2
[

exp
(

−z2ijt
)

− 1
]

Integrating by parts with u =
[

exp
(

−z2ijt′
)

− 1
]

and dv = dt t′−3/2 yields

Ub =

√
π

2ab

∑

i,j

qiqj

[

−2t′−1/2
[

exp
(

−z2ijt′
)

− 1
]∣

∣

α2

0
− 2

∫ α2

0

dt′ t′−1/2z2ij exp
(

−z2ijt
)

]

=

√
π

2ab

∑

i,j

qiqj

[

−
2
[

exp
(

−z2ijα2
)

− 1
]

α
− 2zij

∫ α2

0

dt′ t′−1/2zij exp
(

−z2ijt
)

]

=

√
π

2ab

∑

i,j

qiqj

[

−2
[

exp
(

−z2ijα2
)

− 1
]

α
− 4zij

∫ zijα

0

du exp
(

−u2
)

]

= −
√
π

ab

∑

i,j

qiqj

[

exp
(

−z2ijα2
)

α
+ zij

√
πerf (zijα)

]

(B.13)

This is (A18) of Reed et al. with two small exceptions. Reed’s sum excludes the i = j

term, an error that would prevent the charge neutrality cancellations. Bródka reports

the same expression derived here. The other difference is that Reed’s (A18) has
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β = ηα/
√

η2 + 2α2 in place of α. This difference stems from the different partitioning

of the t integral. The effect of the difference is to shift more of the computation from

real space to reciprocal space. This computational shift is not desirable because

it will slow the convergence of the reciprocal space sum. One may worry that the

method presented here will merely slow the convergence of the real space sum. As

will be seen, the real space sum contains erfc(αzij) terms, the exact same type of

terms that would appear in a point charge calculation. So if α is chosen to make the

real space contributions drop off sufficiently rapidly for a minimum image convention,

then this value of α will also result in a sufficiently rapidly converging real space sum

for Gaussian charges.

B.3 Uc(s)

Finally we handle the real space term, Uc as defined in Equation (B.9). Inverting

both the Jacobi imaginary transformation and the identity of Equation (B.3) gives

Uc =
1

2
√
π

∫ η2/2

α2

dt′ t′−1/2
∑

i,j

qiqj
∑

n

exp
(

−t′
∣

∣ρij + n
∣

∣

2
)

exp
(

−z2ijt′
)

=
1

2

{

∫ ∞

α2

dt′ t′−1/2
∑

i,j,n

′

qiqj exp
[

−t′
(

∣

∣ρij + n
∣

∣

2
+ z2ij

)]

−
∫ ∞

η2/2

dt′ t′−1/2
∑

i,j,n

′

qiqj exp
[

−t′
(

∣

∣ρij + n
∣

∣

2
+ z2ij

)]

+

∫ η2/2

α2

dt′ t′−1/2
∑

i

qi

}

=
1

2







∑

i 6=j

qiqj





erfc (α |rij|)− erfc
(

η√
2
|rij|

)

|rij|



+
∑

i

q2i

(

η√
2π
− α√

π

)







(B.14)

To obtain the final result, Equation (3.9) was used for i 6= j terms assuming a

minimum image convention in the x and y directions.
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Appendix C

Gradient of Coulomb Energy

The Coulomb energy was derived in the main text, but it is often necessary to have

analytic forms of the gradient. For reference, we collect these expressions here.

UT =
1

2V

∑

k 6=0

4πe−k2/4α2

k2
|S1 (k) + S2 (k)|2 +

1

2

n
∑

i=1

n
∑

j=1

qiqj
erfc (α |rij|)
|rij|

+
n
∑

i=1

N
∑

j=1

qiQj
erfc (α |ri −Rj|)− erfc (η |ri −Rj|)

|ri −Rj|

+
1

2

N
∑

i=1

N
∑

j=1

′

QiQj

erfc (α |Rij|)− erfc
(

η√
2
|Rij|

)

|Rij|

+

(

η√
2π
− α√

π

) N
∑

i=1

Q2
i −

α√
π

n
∑

i=1

q2i − V0

∑

i

Qi (C.1)

The gradient of UT can be broken up into contributions from the erfc terms and from

the Fourier series terms. All erfc terms dependent on ri will contribute a term to the

gradient of the form

∂

∂ri

(

erfc(α |ri − rj|)
|ri − rj|

)

=

[

∂
∂ri

erfc(α |ri − rj|)
]

|ri − rj| − erfc(α |ri − rj|)
|ri − rj|2

ri − rj
|ri − rj|

=
− 2α√

π
e−α2|ri−rj |2 |ri − rj| − erfc(α |ri − rj|)

|ri − rj|2
ri − rj
|ri − rj|

= −
(

2α√
π

e−α2|ri−rj |2

|ri − rj|
+

erfc(α |ri − rj|)
|ri − rj|2

)

ri − rj
|ri − rj|

(C.2)

101



The erfc term’s partials with respect to charge coordinates are trivial.

∂Uerfc

∂Qi

=
n
∑

i=1

qi
erfc (α |ri − rj|)− erfc (η |ri − rj|)

|ri − rj|
+

N
∑

i=1

Qi

erfc (α |Rij|)− erfc
(

η√
2
|Rij|

)

|Rij|
(C.3)

The Fourier contribution to the energy is given by

UFT =
1

2V

∑

k 6=0

|S (k)|2 exp
(

− k2

4α2

)

,

where S(k) = S1(k) + S2(k). As is clear from the definition of the structure factors,

S1(−k) = S∗
1(k) and S2(−k) = S∗

2(k). Hence S(−k) = S∗(k), implying that |S(k)| =
|S(−k)|. This symmetry allows the energy to be computed by summing over half of

the k vectors. We choose the half with k1 > 0.

UFT =
1

V

∑

k1≥0

∑

k2,k3

′ 4π

k2
|S(k)|2 exp

(

−k2

α2

)

Finding the gradient of this energy with respect to the ion positions yields

∂UFT

∂ri
=

1

V

∑

k1≥0

∑

k2,k3

′ 4πe−k2/4α2

k2

[

∂S∗ (k)

∂ri
S (k) + S∗ (k)

∂S (k)

∂ri

]

=
1

V

∑

k1≥0

∑

k2,k3

′ 4πe−k2/4α2

k2

[(

−iqike−ik·ri)S(k) + S∗(k)
(

iqike
ik·ri)]

=
qi
V

∑

k1≥0

∑

k2,k3

′ 4πke−k2/4α2

k2
[i cos (k · ri) (S∗ (k)− S (k))− sin (k · ri) (S∗ (k) + S (k))]

=
qi
V

∑

k1≥0

∑

k2,k3

′ 8πke−k2/4α2

k2
[cos (k · ri) Im (S (k))− sin (k · ri) Re (S (k))]

(C.4)

The gradient with respect to Gaussian charge magnitudes is

∂UFT

∂Qi

=
1

V

∑

k1≥0

∑

k2,k3

′ 4πe−k2/4α2

k2

[

∂S∗ (k)

∂Qi

S (k) + S∗ (k)
∂S (k)

∂Qi

]

=
1

V

∑

k1≥0

∑

k2,k3

′ 4πe−k2/4α2

k2

[

e−ik·riS(k) + S∗(k)eik·ri
]

=
1

V

∑

k1≥0

∑

k2,k3

′ 4πe−k2/4α2

k2
[cos (k · ri) (S∗ (k) + S (k)) + i sin (k · ri) (S∗ (k)− S (k))]

=
1

V

∑

k1≥0

∑

k2,k3

′ 8πe−k2/4α2

k2
[cos (k · ri) Re (S (k)) + sin (k · ri) Im (S (k))] (C.5)
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Putting it all together,

∂UT

∂ri
=
qi
V

∑

k1≥0

∑

k2,k3

′ 8πke−k2/4α2

k2
[cos (k · ri) Im (S (k))− sin (k · ri) Re (S (k))]

−
N
∑

j=1

qiQj

(

2α√
π

e−α2|ri−Rj |2

|ri −Rj|
+

erfc(α |ri −Rj|)
|ri −Rj|2

)

ri −Rj

|ri −Rj|

+
N
∑

j=1

qiQj

(

2η√
π

e−η2|ri−Rj |2

|ri −Rj|
+

erfc(η |ri −Rj|)
|ri −Rj|2

)

ri −Rj

|ri −Rj|

−
n
∑

j=1

qiqj

(

2α√
π

e−α2|rij |2

|rij|
+

erfc(α |rij|)
|rij|2

)

rij
|rij|

(C.6)

and

∂UT

∂Qi

=
n
∑

j=1

qi
erfc (α |ri − rj|)− erfc (η |ri − rj|)

|ri − rj|
+

N
∑

j=1

Qi

erfc (α |Rij|)− erfc
(

η√
2
|Rij|

)

|Rij|

+
1

V

∑

k1≥0

∑

k2,k3

′ 8πe−k2/4α2

k2
[cos (k · ri) Re (S (k)) + sin (k · ri) Im (S (k))]

+ 2

(

η√
2π
− α√

π

)

Qi − V0 (C.7)
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Appendix D

Lagrange Multipliers

Here we review the use of Lagrange multipliers for constrained optimization. To build

intuition, we first consider a low-dimensional example. Suppose f(x, y) is a function

defined over R2 and g(x, y) = 0 is a curve in R
2. For example we could have a situation

as shown in Figure D.1, where level curves of f(x, y) are plotted along with g(x, y) = 0

for some particular but unimportant choice of f and g. The constrained extremum

is the point on g(x, y) = 0 which extremizes f(x, y), but from the contour plot it

is clear that the constraint curve does not run through the unconstrained extremum

of f . The figure reveals that, at least in two dimensions, the constrained extrema

occur at points where the level curves of f(x, y) are parallel to g(x, y) = 0. If these

two curves were not parallel, moving infinitesimally along the curve g(x, y) = 0 would

cross a level curve of f(x, y). Hence moving (in one direction) along g(x, y) = 0 would

decrease the value of f(x, y). Along the opposite direction f(x, y) would of course

increase. Recalling that a gradient is perpendicular to level curves, it must then be

the case that the gradient of f(x, y) and the gradient of g(x, y) are parallel at the

critical points. Hence,

∇f ∝ ∇g or equivalently ∇f = λ∇g

This can be generalized to arbitrary dimensions, as shown by the following proof.

Claim: If x∗ is a critical point then ∇f(x∗) ∝ ∇g(x∗)

Proof. Let
(

∂f
∂xi

)(

∂xi

∂g

)

= λi and take λ = min {λi}. Consider an infinitesimal change

from x∗ → x∗ + δx on the hypersurface g (x) = 0. Since this move remains on the

constrained hypersurface,

∂g =
∑

i

∂g

∂xi

δxi = 0
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Figure D.1: Level curves of f(x, y) = x2 + y2 plotted along with the constraint g(x, y) =
2x2 + y2 + xy − 2 = 0. The function f(x, y) is extremized over g(x, y) = 0 at points where
the gradients of f and g are parallel.

Now consider the variation in f subject to this constraint.

∂f =
∑

i

∂f

∂xi

δxi =
∑

i

λi
∂g

∂xi

δxi

= λ
∑

i

∂g

∂xi

δxi +
∑

i

(λi − λ)
∂g

∂xi

δxi

= λ∂g +
∑

i

(λi − λ)
∂g

∂xi

δxi

=
∑

i

(λi − λ)
∂g

∂xi

δxi

As δxi is arbitrary, ∀ i with λi 6= λ choose sgn(δxi) = sgn
(

− ∂g
∂xi

)

. By construction,

(λi − λ) is guaranteed to be positive, so each term in the sum is negative ⇒ ∂f < 0

along the specified direction, δx =
∑

i δxi. Only in the case that λi = λ ∀ i will

there be no direction that gives rise to a nonzero variation in f . Hence at the critical

points, λi = λ ∀ i. Using our definition of λi, this implies that ∂f
∂xi

= λ ∂g
∂xi

. Since this

holds for all i, ∇f = λ∇g.
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D.1 Constrained Optimization as an Effective Un-

constrained Problem

Let’s revert back to two dimensions temporarily. Our condition for constrained ex-

trema, ∇f = λ∇g, can be written with respect to each coordinate. These conditions

are combined with the constraint to give the following system with three equations

and three unknowns (x, y, λ).










∂f
∂x

= λ ∂g
∂x

∂f
∂y

= λ∂g
∂y

g(x, y) = 0

Suppose we instead considered the function of x, y, and λ given by

K(x, y, λ) = f(x, y)− λg(x, y) (D.1)

The unconstrained optimization of K is straightforward. Critical points require that

∇K = 0. Hence variation in K with respect to x, y, and λ must all be zero. Perform-

ing these partial derivatives on Equation (D.1) yields exactly the same system that

we found in the case of our constrained optimization. The generalization is natural.

Consider the optimization of f (x) subject to the k constraints {gk (x) = 0}. This is
equivalent to solving the unconstrained optimization problem of

K(x, λ) = f(x)−
∑

k

λkgk(x)

Classical mechanics in the Lagrangian form is formally just a constrained optimization

problem. Since the constraints must hold for all values of time, rather than indexing

these additional multipliers by a discrete number, we index them by the continuous

variable t. This means each λk is actually a function λk(t). Hence the action to be

minimized for a constrained Lagrangian is

S[x(t)] =

∫

dtL(x, ẋ)−
∑

k

∫

dtλk(t)gk(x)

Equivalently,

Seff [x(t)] =

∫

dtLeff (x, ẋ),

where Leff (x, ẋ) ≡ L(x, ẋ)−
∑

k λk(t)gk(x).
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Appendix E

Conjugate Gradient Pseudocode

As discussed in Sections 4.3.4 and 4.4.4, the conjugate gradient method can be applied

to electrostatic minimization. Here we give pseudocode for the basic algorithm. The

pseudocode for unconstrained minimization is the same as that provided by Shewchuk.

[48] Adding a constraint only slightly alters the algorithm.

Algorithm 1 Unconstrained Conjugate Gradient for Constant Potential Calculations

r ← b− AQ
d← r
δnew ← rT r
i← 0
while i < imax and δnew > tol do

y ← Ad
α← δnew

dT y

Q← Q+ αd
δold ← δnew
if i is divisible by 50 then ⊲ Avoid drifting residuals

r ← b− AQ
else

r ← r − αy
end if
δnew ← rT r
β ← δnew

δold
d← r + βd
i← i+ 1

end while

Note that we must be able to compute Ad as well as (b − AQ). We make use of

the fact that (b − AQ) = −∇U(Q) for an arbitrary vector Q.1 In fact, this implies

1This follows most clearly from Equation (4.4).
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that

Ad = b+∇U(d).

It does not make physical sense to discuss the gradient of the energy, U , evaluated at

the search vector d. Nevertheless, this gradient is precisely the information necessary

to deduce the optimal step size, α. Replacing Qi by di everywhere in Equation (C.7)

allows one to compute ∇U(d) and therefore Ad in O(N) Fourier sums.

Algorithm 2 Constrained Conjugate Gradient for Constant Charge Calculations

r ← b− AQ
p← Hr ⊲ Project r onto the feasible search space. H given in Section 4.4.4
d← p
δnew ← rTd
γnew ← δnew
i← 0
while i < imax and δnew > tol do

y ← Ad
α← δnew

dT y

Q← Q+ αd
γold ← γnew
if i is divisible by 50 then ⊲ Avoid drifting residuals

r ← b− AQ
else

r ← r − αy
end if
p← Hr
γnew ← rTp
β ← γnew

γold
d← p+ βd
δnew ← rTd
i← i+ 1

end while
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