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ABSTRACT
We present an approach based upon binary tree tensor network (BTTN) states for computing steady-state current statistics for a many-particle
1D ratchet subject to volume exclusion interactions. The ratcheted particles, which move on a lattice with periodic boundary conditions
subject to a time-periodic drive, can be stochastically evolved in time to sample representative trajectories via a Gillespie method. In lieu
of generating realizations of trajectories, a BTTN state can variationally approximate a distribution over the vast number of many-body
configurations. We apply the density matrix renormalization group algorithm to initialize BTTN states, which are then propagated in time
via the time-dependent variational principle (TDVP) algorithm to yield the steady-state behavior, including the effects of both typical and
rare trajectories. The application of the methods to ratchet currents is highlighted, but the approach extends naturally to other interacting
lattice models with time-dependent driving. Although trajectory sampling is conceptually and computationally simpler, we discuss situations
for which the BTTN TDVP strategy can be beneficial.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099741

I. INTRODUCTION

Over the past few decades, tensor networks (TNs) have
emerged as one of the most powerful mathematical tools for numer-
ically manipulating high-dimensional quantum states. The compu-
tational power is achieved because tensor networks dramatically
shrink the dimensionality of quantum states and operators by
decomposing intractably large vectors and matrices into a compo-
sition of smaller tensors that serve as an attractive approximation
method. Furthermore, by adjusting the dimensionality of auxiliary
indices that link the tensors, tensor networks enable variational cal-
culations with controllable errors. In the limit of high-dimensional
auxiliary indices, exact results are recovered, but the practical ben-
efit is gained by reducing the dimensionality to obtain approxi-
mate results at a dramatically lower computational expense. For
example, the density matrix renormalization group (DMRG) algo-
rithm1 is widely used to converge low-entanglement many-body
quantum ground states by sweeping through a tensor network
while performing computationally tractable local optimizations.
Dynamics of quantum states can similarly be approximated via the

time-dependent variational principle (TDVP),2,3 which also pro-
ceeds by a sweep of local operations on tractable tensors.4,5

While tensor networks were initially applied to quantum
systems, their use has also been extended to classical stochastic
systems.6–14 More specifically, tensor network methods have been
used to compute large deviation functions, which measure the prob-
ability of dynamical fluctuations both near equilibrium and far from
equilibrium. Helms et al. recently identified dynamical phase tran-
sitions separating jamming and flowing phases within the 1D and
2D asymmetric simple exclusion processes (ASEP). These stud-
ies used the matrix product state (MPS), a 1D chain of tensors,
and the projected entangled pair state (PEPS), the 2D analog of
the MPS, to probe the thermodynamic limits of the ASEP for 1D
and 2D systems, respectively.6,8 In another study by Bañuls and
Garrahan, the DMRG was used to compute trajectory-space phase
transitions in the activity of kinetically constrained models.7 Still,
the use of tensor networks to evaluate classical stochastic dynam-
ics remains relatively unexplored. A major complication is that the
relevant stochastic operators, unlike quantum operators, are almost
always non-Hermitian, and compared to Hermitian operators,
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diagonalizing and exponentiating these non-Hermitian operators is
more demanding and more prone to numerical instabilities. Con-
sequently, iterative tensor network procedures, such as the DMRG
and TDVP, can present numerical complications when applied to
non-symmetric operators.15

Here, we show that classical stochastic dynamics can never-
theless be robustly propagated by non-Hermitian operators via the
TDVP using a binary tree tensor network (BTTN).16–18 The TDVP
approach offers an unexplored route to analyze the impact of many-
particle interactions in noise-driven ratchets. We had previously
analyzed the behavior of a single-particle 2D ratchet under time-
periodic driving by discretizing space to obtain a Markovian approx-
imation to the continuum dynamics. This discrete state Markov
dynamics was amenable to spectral computations of the current via
large-deviation methods.19 Here, we leverage the TDVP with the
BTTN architecture, extending this approach to compute the current
generated by multiple interacting particles moving on a 1D lat-
tice subject to a time-dependent ratcheting potential. The approach
has been discussed at a high level in our recent Communication;20

here, we focus on the technical details that allow the TDVP/BTTN
methodology to compute the statistical properties of currents in
time-periodic steady states21–24 in the presence of interactions.25

In particular, we illustrate that the calculations recapitulate Monte
Carlo samples generated using the Gillespie algorithm while avoid-
ing the sampling noise. Crucially, the TDVP/BTTN calculations
agree with sampled trajectories in both the mean behavior and fluc-
tuations. These current fluctuations are accessible at essentially no
additional cost to the TN approach, whereas sampled trajectories
grow increasingly more costly as the targeted fluctuations become
rarer.

II. METHODS
A. 1D ratchet model

We set out to study a discretized 1D flashing ratchet with
periodic boundary conditions, a tunable driving frequency, and a
variable number of particles that interact through volume exclusion.
Many previous investigations of single-particle 1D and 2D ratch-
ets motivated the particular form of the ratcheting potentials.19,26–29

The focus on interactions has some precedent. Of particular note,
Kedem and Weiss simulated trajectories of many electrons inter-
acting via a Coulomb potential in a 2D ratchet.30 As in that work,
our transported particles are subject to a spatiotemporal potential as
follows:

U(x, t) = X(x)T(t), (1)

where T(t) and X(x) are periodic in time and in space, respectively.
For the flashing ratchet model, T(t) is a square wave with period τ
and amplitude Vmax that toggles between on and off stages,

T(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Vmax, 0 ≤ t < τ
2

,

0,
τ
2
≤ t < τ.

(2)

Following the setup from Ref. 19, the spatial potential is a
superposition of two sinusoids,

X(x) = a1

2
sin( 2πx

xmax
) + a2

2
sin( 4πx

xmax
), (3)

where xmax is the length of the repeating unit and a1 and a2 sculpt
the potential. We assign a1 = 1 and a2 = 0.25.

The setup is very similar to our previous single-particle work,19

so we highlight two important distinctions. First, we are now con-
sidering a 1D ratchet with particles that can only move along the
x direction; particles in our earlier work generated current along that
same x direction but could additionally move along another dimen-
sion. Second, our temporal function T(t) toggles between Vmax and
0, not between Vmax and −Vmax. For a 1D ratchet, this move from a
symmetric square wave temporal drive to a flashing ratchet is needed
to generate nonvanishing current.31 Otherwise, any motion occur-
ring within the first half of the period would be offset by motion in
the opposite direction during the second half of the period. As illus-
trated in Fig. 1, the flashing ratchet generates current in the negative
direction owing to the asymmetric sawtooth form of U(x, t).

B. Time-periodic steady-state currents
By coarse graining the 1D ratchet in space, the dynamics is

modeled as a nearest-neighbor Markov jump process on a period-
ically replicated lattice of N sites with grid spacing h. This jump
process obeys the master equation as follows:

∂∣p⟩
∂t
=W(t)∣p⟩, (4)

where W(t) is the time-dependent rate operator and ∣p⟩ is the state
vector consisting of the probabilities of each possible system config-
uration. The time-dependent W(t) toggles between two distinct sets
of rates with a period τ,

W(t) =
⎧⎪⎪⎨⎪⎪⎩

W1, 0 ≤ t < τ/2,

W2, τ/2 ≤ t < τ.
(5)

FIG. 1. Schematic of the 1D flashing ratchet. The driving protocol consists of a
potential energy landscape that toggles between the on and off states with period
τ. From the initial time to τ/2, particles concentrate in the bottom of a well. During
the subsequent half period, these particles diffuse outward on a flat landscape
before again settling in the wells during the next period. The asymmetric potential
generates current in the −x direction, with the current magnitude depending on the
frequency of flashing.
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In the first half of the period, dynamics evolves on the sawtooth
landscape analogous to Ref. 19, so W1 is a rate matrix permitting
nearest-neighbor hops from site i to site i ± 1 with rate

r1,i→i±1 = ±
VmaxX′(x)

2h
+ D

h2 , (6)

provided that site i ± 1 is vacant. The prime denotes the derivative
with respect to x. In the continuum h→ 0 limit, the parameter D
becomes the diffusion constant of the associated overdamped single-
particle Langevin dynamics.32 In the second half of the period, the
potential is turned off and the evolution proceeds on a flat landscape.
The rate matrix W2 permits the same volume-excluding nearest-
neighbor hops, but the rates of these hops are now r2,i→i±1 = D/h2.
Consistent with Ref. 19, we set Vmax to 0.1 and D is given the value
of 12.64.

The long-time limit of Eq. (4) approaches the time-periodic
steady-state vector ∣π⟩t on the time interval t ∈ [0, τ]. When the
operators W1 and W2 are cast as matrices, ∣π⟩0 is simply obtained
as the leading eigenvector of the full–period transition matrix
T ≡ eτW2/2eτW1/2. In this work, we seek period-averaged macro-
scopic currents around the ring, constructed in terms of the
time-dependent currents from site j to site i, jij(t),

̄ = 1
τ∫

τ

0
dt∑

i,j
dijjij(t), (7)

where the weights

dij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1, j directly left of i,
−1, j directly right of i,
0, otherwise

(8)

pick out the oriented nearest-neighbor transitions. To characterize
the mean and variance of these currents at the time-periodic steady
state, we define the scaled cumulant-generating function (SCGF)
ψ(λ) as

ψ(λ) ∶= lim
n→∞

1
n

ln ⟨eλn̄ ⟩n, (9)

where n is the number of driving periods. The first and second
derivatives of ψ(λ), evaluated at λ = 0, yield the mean and variance
of the current.33 It is known that ψ(λ) can be obtained from the
largest eigenvalue of a product of matrix exponentials33–36 as

ψ(λ) = 1
τ

ln max eig(eW2(λ)τ/2eW1(λ)τ/2), (10)

with the so-called tilted rate operators Wk(λ) defined in terms of the
original equation (5) rate operators as

[Wk(λ)]ij ∶= [Wk]ijeλdij. (11)

When evolving dynamics of many interacting particles, the
matrix representation of the titled operator becomes untenable due
to the exponential growth of the state space. Therefore, it is imprac-
tical to directly compute the product of matrix exponentials in
Eq. (10). Instead, we can start with an arbitrary state vector at time

zero. This initial state can be numerically propagated in time by
W1(λ) for half a period and then propagated by W2(λ) for another
half a period. This time propagation is continued until the time-
periodic steady state is reached, at which point the SCGF is deduced
from

∣π(λ)⟩τ = exp(ψ(λ)τ)∣π(λ)⟩0, (12)

with ∣π(λ)⟩t being the time-periodic steady state subject to expo-
nential bias λ. The advantage of this dynamical approach is that it
can be practically implemented for many-body dynamics when the
time evolution is approximated using the TDVP algorithm. This
algorithm, which projects the natural dynamics onto a subspace
defined by a tensor network (TN) ansatz, leverages the expression
of Wk(λ) in terms of local operators acting on each lattice site. In
this occupation basis, or second quantized form,

Wk(λ) =
N

∑
i=1

rk,i→i+1(eλaia†
i+1 − nivi+1)

+
N

∑
i=1

rk,i+1→i(e−λa†
i ai+1 − vini+1), (13)

where ai, a†
i , ni, and vi are annihilation, creation, particle number,

and vacancy number operators at site i, respectively. Note that the
periodic boundary conditions lead us to associate N + 1 ≡ 1. Because
the second quantized operator only involves nearest-neighbor inter-
actions, it can be expressed as a product of operator-valued matrices,
one per site of the lattice. These operator-valued matrices, discussed
explicitly in Appendix A and symbolically represented by gray circles
in Fig. 2(a), allow Eq. (13) to be efficiently computed as the prod-
uct of the operator-valued matrices, i.e., a matrix product operator
(MPO).37 If the state ∣p⟩ is similarly decomposed into a local site rep-
resentation, the action of Wk(λ) on ∣p⟩ can be calculated even when
the matrix form of Wk(λ) is too large to explicitly construct. For
example, Wk(λ) would be a roughly 109 × 109 matrix for the 32-site
lattice with 16 particles discussed in Sec. IV D.

C. Tensor networks
To leverage the MPO, we express the state vector ∣p⟩ from

Eq. (4) in terms of a product basis of local basis states ∣si⟩ on
site i as

∣p⟩ = ∑
s1 ,...,sN

cs1 ,...,sN ∣s1, . . . , sN⟩. (14)

The rank-N tensor c depends on the N physical indices s1, . . . , sN ,
but c is so high dimensional that it cannot be practically computed.
Rather, we introduce a tensor network (TN) ansatz in which c is
generated by a network of tensors A(1), A(2), . . . , A(χ), each with mod-
est rank. These tensors can depend on some of the physical indices
(s1, . . . , sN) reflecting the occupation at each site and some auxil-
iary indices that will be summed over. We adopt the nomenclature
that Si is a set of physical indices upon which the ith tensor depends
(potentially an empty set) and Qi the set of auxiliary indices. The
tensor product ansatz is a restriction that we only allow expansion
coefficients of the form

cs1 ,...,sN = ∑
Q1 ,...,Qχ

A(1)Q1 ,S1
A(2)Q2 ,S2

, . . . , A(χ)Qχ ,Sχ , (15)
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FIG. 2. Binary tree tensor network (BTTN) diagrams. (a) This BTTN corresponds to a 16-site lattice, with tensors and indices shown as squares and lines, respectively. The
lines sticking out of the bottom layer of the tree represent physical indices and can contract with the corresponding physical indices in a matrix product operator (MPO),
representing some rate operator W. This diagram therefore illustrates the action of W on an arbitrary state ∣p⟩. (b) Here, the BTTN is built from a 64-site lattice and has
tensors visually rearranged to emphasize the one-to-one mapping of tensors to sites along a circular lattice, as found in the 1D ratchet studied in this work and any other
system subject to periodic boundary conditions. A red arrow is added to depict the largest distance Lmax one has to travel between any two neighboring lattice sites. Contrary
to a loopless MPS, here Lmax scales logarithmically with the number of sites, thus rendering BTTN methods both accurate and tractable even with the absence of loops.

yielding a state vector that is parameterized by the set of all A’s as

∣p[A]⟩ = ∑
S1 ,...,Sχ

Q1 ,...,Qχ

A(1)Q1 ,S1
A(2)Q2 ,S2

, . . . , A(χ)Qχ ,Sχ ∣s1, . . . , sN⟩. (16)

Note that any choice of tensors [A] will yield a rank-N tensor c,
but the converse may not be true. The realization of any arbitrary
rank-N tensor in terms of a TN requires that the auxiliary indices
linking the tensors are sufficiently high dimensional. The TN ansatz
derives its computational utility by restricting this auxiliary index
dimensionality, the so-called bond dimension. By finding a bond
dimension that is large enough but not too large, it is often possible
to make a good approximation to the exact dynamics while gaining
the computational benefit of low dimensional tensors. Specifically,
we cap the bond dimension at m, a tunable variational parameter,
which generally controls how much the auxiliary indices can medi-
ate correlations between nearby physical indices. A very large m
value inevitably renders TN calculations intractable, whereas a very
small m value generates an inflexible subspace on which variational
calculations are excessively constrained. Capping the bond dimen-
sion necessarily means that one discards some information, so as we
will discuss, singular value decompositions (SVD) can be strategi-
cally employed to preserve only the m most essential components of
a matrix.

III. DYNAMICS OF THE TENSOR NETWORK
A. Binary tree tensor network

To actually perform a calculation, it is necessary to specialize
to a particular design of how tensors are connected in a network.

In other words, one must specify which indices belong to each of
the sets Si and Qi. For 1D quantum and classical systems, the choice
of network is usually a matrix product state (MPS). This MPS ansatz
has proved to be convenient and robust for many applications.37 The
convenience derives from the ability to generate a canonical form or
Schmidt decomposition, which allows for efficient and stable com-
putations on an MPS.38 Unfortunately, for systems with periodic
boundary conditions, it is not possible to represent an MPS in a
canonical form due to the loop in the TN structure.37 To handle the
periodic boundary conditions of the ratchet with a loopless TN that
supports a canonical form, we, therefore, use a BTTN.39,40

The tree itself is illustrated in Fig. 2(a). Following Ref. 41, we
label each tensor A(i) not by a single superscript (i) as in Eq. (15)
but rather by the pair [l, i], indicating that the tensor appears in the
ith node of the lth layer of the tree. These L ≡ log2N layers count
up from 0 at the root of the tree to L − 1 at the base, while the sites
count up from 0 to 2l − 1 moving from left to right across a layer.
Into the base of the tree, feed N physical indices with dimension
d = 2 corresponding to lattice sites that are either occupied or unoc-
cupied. These tensors of the l = L − 1 layer feed upward into parent
tensors via auxiliary links. To capture all possible rank-N tensors
c, the dimension of each auxiliary index must grow such that the
link between layers l and l + 1 would have dimension M(l) = 22L−l−1

.
Assuming that auxiliary indices are truncated at a maximum bond
dimension m, the auxiliary link between l and l + 1 actually has
dimension min(m, M(l)).

The tree structure offers two principle benefits. Its loopless
structure provides access to a canonical form, dramatically sim-
plifying calculations. Furthermore, the BTTN allows correlations
between pairs of lattice sites since each physical index is connected
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to each other physical index by a pathway whose length grows only
logarithmically with the number of lattice sites [see Fig. 2(b)]. Due to
these merits, the BTTN has been applied to compute ground states
via the DMRG41 and dynamics via the TDVP.16,17 We follow these
works closely in applying the methodology to our problem.

B. Orthogonalization of the BTTN
The mapping from the [A] tensors to the expansion coef-

ficient c is many-to-one, so different combinations of values for
the tensors can yield an identical state ∣p⟩. One way this so-called
gauge freedom can come about is by introducing a resolution of
the identity, D−1D, between tensors at neighboring nodes.42 If one
tensor is transformed by D−1 while its neighbor has a compen-
satory transformation by D, then the contraction of the tensors
is unaffected though the individual tensors will change. Typically,
one leverages the gauge freedom even more aggressively, transform-
ing many tensors in a way that strategically privileges one node
[l, i]. Observe that the tensor A[l,i] is linked to one parental branch
and two child branches. It is convenient to consider the three so-
called environment tensors ∣P[l−1,i/2]⟩, ∣L[l+1,2i]⟩, and ∣R[l+1,2i+1]⟩ [see
Fig. 3(c)], which capture the cumulative effect of the parent branch,
left child branch, and right child branch, respectively. Note that each
of these environment tensors depends on a single auxiliary index
(one that feeds into A[l,i]) and all the physical indices associated
with its branch of the tree. A state ∣p⟩ is orthogonalized about [l, i]
(we say that [l, i] is the orthogonality center of the tree) when it can be
written as

∣p[l,i][A]⟩ = ∑
α,β,γ

A[l,i]αβγ ∣P
[l−1,i/2]
α ⟩∣L[l+1,2i]

β ⟩∣R[l+1,2i+1]
γ ⟩, (17)

with a gauge chosen such that the environment tensors satisfy
the orthonormality conditions ⟨Pα′ ∣Pα⟩ = δα,α′ , ⟨Lβ′ ∣Lβ⟩ = δβ,β′ , and
⟨Rγ′ ∣Rγ⟩ = δγ,γ′ . The computational benefit of this chosen gauge is
clearest by computing the norm of the BTTN state,

⟨p[l,i][A]∣p[l,i][A]⟩ = ∑
α,β,γ

A[l,i]†αβγ A[l,i]αβγ , (18)

with † denoting Hermitian conjugation. Due to the environment
tensor orthonormality, the norm only depends on the tensor at [l, i].

The BTTN TDVP algorithm must advance ∣p⟩ in time by
advancing each tensor in the set [A] in time, one by one. Akin to
the norm calculation, the time evolution of A[l,i] is most efficient if
the BTTN has first been orthogonalized about [l, i]. After this prop-
agation of A[l,i], a new gauge transformation can reorthogonalize
about a new node [l′, i′] to allow the tensor at this node to be effi-
ciently propagated. An explicit algorithm to carry out these BTTN
orthogonalizations17,41 is discussed in Appendix B.

C. Time evolution of tensor network states
In Sec. II B, we cast the calculation of currents in terms of a

dynamic problem, requiring that we propagate a state ∣p⟩ in time
with propagators Wk(λ). If we were to represent ∣p⟩ with the full
rank-N tensor as in Eq. (14), this time evolution requires that we

FIG. 3. TDVP traversal order [(a)–(g)] for the binary tree tensor network (BTTN) of an eight-site lattice. The starting and ending points are the left-most and right-most leaves
of the tree, respectively. In each diagram, the tensor currently being updated, namely, node [l, i], is colored in beige. Tensors that have already been time propagated are
colored red, and the triangle shapes are used to point at the tensor serving as the orthogonalization center, [l, i]. Tensors that remain to be time propagated are colored
in blue. Environment tensors ∣P⟩, ∣L⟩, and ∣R⟩ are the composition of all tensors in the beige tensor’s parent branch, left branch, and right branch, respectively. If a sweep
is divided into two half-sweeps, as is often seen for matrix product state (MPS) methods, initially, steps (a)–(g) are performed, followed by a second set of updates in the
reverse order.
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numerically solve for the time-dependence of the expansion coeffi-
cient c. In Sec. III A, we argued that ∣p⟩ should instead be constructed
from a set of tensors [A] with a restricted bond dimension. Imag-
ine propagating this state for time Δt with the tilted operator:
eWk(λ)Δt ∣p[A]⟩. This newly evolved state generally cannot be exactly
constructed in terms of the BTTN with the restricted bond dimen-
sion. Rather, the dynamics that starts with a BTTN state will have
left the manifold of BTTN states and leaked into a nearby state in
the space of possible rank-Nc. The earliest attempts to propagate TN
states approximated the matrix exponential with a discrete time step,
but these approaches, such as the time-evolving block decimation
(TEBD),43,44 could run into problems associated with the departure
from the manifold of TN states.4,45 An alternative approach seeks to
propagate ∣p⟩ with a constraint that the state remains confined on a
variational manifold of allowed states. Conceptually, one can think
of that constrained dynamics as consisting of the ordinary matrix
exponential eWk(λ)Δt for infinitesimal time Δt immediately followed
by a projection onto the variational states. This time-dependent
variational principle (TDVP), first proposed by Dirac and Frenkel
as a broad technique for variationally optimized dynamics,2,3 was
resurrected by Haegeman et al. when they demonstrated that the
TDVP approach proved particularly effective when combined with
the flexibility of a TN ansatz.4,5

This TN implementation of the TDVP, initially implemented
for an MPS but later updated for tree tensor networks,16,17 provides
an algorithm to evolve ∣p(t)⟩ with a discrete time step by comput-
ing an equation of motion for the tensors [A] that parameterize the
variational state. Furthermore, even with a discrete time step, the
dynamics is constructed to rigorously remain on the TN variational
manifold. The TN ansatz combines especially nicely with the TDVP
approach because for a suitably orthogonalized BTTN, the algorithm
implementing [A]’s time evolution can efficiently act on one single
A[l,i] tensor at a time. We carried out the single-center TDVP pro-
cedure reported by Bauernfeind and Aichhorn,17 which we describe
here and detail in Appendix C. To avoid truncation errors, we cal-
culated dynamics using BTTN states with a fixed bond dimension,
motivating the choice of a single-center algorithm over a two-center
alternative.16

The algorithm starts with a set of tensors [A] at time zero and
carries out a step with time step Δt to yield a new set [A′] for this
later time. Tensors in the BTTN are updated one by one accord-
ing to an ordering for the tree traversal illustrated in Fig. 3. At
tensor A[l,i], one follows Appendix B to orthogonalize the BTTN
about node [l, i]. The tensor at the orthogonalization center [l, i]
is then propagated forward in time for a time step of Δt/2 via a
Lanczos exponentiation routine46 by a local effective operator W[l,i]eff ,
as described in Appendix C. This node is now said to be evolved
forward by Δt/2. The tensor that had just been evolved in time is
then decomposed via a singular value decomposition (SVD) into a
product of orthogonal unitary operators U and V† sandwiching a
diagonal matrix of singular values S. This U is retained as the new
time-propagated tensor at node [l, i], but the product SV† will be
contracted with the neighboring node to shift the orthogonaliza-
tion center in preparation for the next node of the tree traversal
sequence. Notice that, however, SV†, which will be contracted into
the neighboring node, was already advanced in time by an extraΔt/2
relative to this neighboring node. Before contracting them together,
it is therefore necessary to propagate SV† backward in time by
Δt/2. The net result is that node [l, i] is advanced by Δt/2 and the
orthogonalization center is shifted to the next node in sequence.
One sweep of dynamics passes through the tree in the order of
Fig. 3 to propagate by Δt/2 and then completes the full timestep by
passing back through the tree in reverse order to propagate by an
additional Δt/2.

IV. RESULTS
A. Constructing the initial BTTN state

To compute the SCGF for currents using the tilted dynamics
of Eq. (12), we first must generate an initial BTTN state. This ini-
tial state should satisfy two needs. First, it should be similar to the
time-periodic steady state. Due to the Perron–Frobenius theorem,
an arbitrary initial state would relax into the time-periodic steady
state, but the closer the initial state is, the faster the TDVP can con-
verge. Second, the initial state must be constructed with a maximal

FIG. 4. Convergence to the steady state of W2, ∣π2⟩, by the DMRG to serve as a seed in the TDVP calculations. As a rate matrix, the top eigenvalue of W2 is zero, so
convergence was assessed by monitoring how the estimate of the top eigenvalue ψ2 approached zero for a 32-site lattice with eight (a) and 16 (b) particles. The DMRG
calculations were repeated with maximal bond dimensions m of 30 (squares) and 50 (triangles) and with the subspace expansion mixing parameter values κ of 10−7, 10−5,
and 0.1 (green, purple, and orange, respectively). For the DMRG to fully converge, m must be sufficiently large and κ must be neither too large nor too small.
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FIG. 5. Scaled cumulant-generating function (SCGF) and rate function obtained from the TDVP. (a) The SCGF ψ(λ) is plotted as a function of the biasing parameter λ
for a 32-site lattice occupied by 16 particles and two driving frequencies (100 and 1000). The slope of the SCGF at λ = 0 is observed to have a greater magnitude when
f = 100 than when f = 1000, in agreement with the trends in the currents seen in Fig. 7. (b) The SCGF values were used to compute rate functions I(̄), shown in thick
dots, via a numerical Legendre transform. These rate functions were shown to be in very good agreement with Gillespie sampling (using the algorithm from Appendix E) of
106tobs = 0.1 long trajectories. These Gillespie-sampled rate functions (small dots) fit a rate function from the histogram for P(̄) using I(̄) = − ln(P(̄) − P(⟨̄⟩))/tobs.

bond dimension m that is sufficiently large that the BTTN manifold
of states is a good approximation for the full state space. Because the
single-center TDVP algorithm will not alter the bond dimension of
this initial BTTN state, it is important that the initial state is con-
structed with careful control over the value of m. A version of the
DMRG algorithm for BTTNs, described in Appendix D, meets both
needs.

Recall that one period of the flashing ratchet first acts with
W1 for time τ/2 and then with W2 for time τ/2. In the large τ,
slow switching limit, the time-periodic steady state at the end of
a full period will be very similar to the time-independent steady
state of eW2τ/2, which, of course, shares eigenstates with the sim-
pler W2. As a seed for the TDVP, we therefore construct the top
eigenstate of W2, ∣π2⟩. Because W2 is a rate matrix, ∣π2⟩ has an asso-
ciated eigenvalue of zero and has the physical interpretation of the
(equilibrium) steady state for the zero-potential “off” state of the
ratchet. We build a BTTN approximation to ∣π2⟩ using a particu-
lar BTTN implementation of the DMRG, described in Appendix D,
and we confirmed convergence of the algorithm by comparing the
associated eigenvalue ψ2 with zero.

For a lattice with N sites, this DMRG algorithm is seeded
with any pure state [a state in which a single amplitude cs1...sN in
Eq. (14) is unity and the rest are zero] with exactly Nocc occupied
sites. The occupancy of each site specifies the physical indices of
that pure state, while the auxiliary indices are initially trivial with
bond dimension 1. The DMRG algorithm of Appendix D employs
subspace expansion with a mixing parameter κ to allow the bond
dimension to grow until it reaches the targeted value m. For lat-
tices with 128 or fewer sites, the DMRG fully converged to the
steady state of W2 within a few dozen DMRG sweeps though the
convergence generally requires a sufficiently large m and a tuned
value of κ that is neither too small nor too large.47 It is impor-
tant to realize that the DMRG has more difficulty converging to
the steady state as additional particles are added to the lattice.
Figure 4 shows these convergence trends for a 32-site lattice with
Nocc = 8 and 16.

FIG. 6. Estimates (denoted with a hat) of ⟨vx⟩ (a) and the SCGF ψ(λ) (b) under
weak biasing with λ = −δ ≡ −10−4 are plotted for each period of TDVP evolution
with a timestep of 10−6. The results are shown for a 32-site lattice occupied by
16 particles and a driving frequency of 1 MHz. The corresponding value of the
average particle velocity obtained from Gillespie sampling is represented by the
blue horizontal line, whose thickness is three times the standard error. The mean
current extracted from TDVP agrees with the Gillespie sampling in fewer periods
of driving than are required to converge the SCGF.
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B. Extracting the SCGF for currents from the TDVP
The SCGF for period-averaged currents, ψ(λ), is computed

via the TDVP evolution and Eq. (12). The resulting SCGF, plot-
ted in Fig. 5, contains information about the mean, variance,
and higher cumulants of ̄. These statistical properties can be
extracted from the behavior of the SCGF in the neighborhood of
the origin, with the kth cumulant of ̄ computed from the kth
derivative of ψ(λ) evaluated at λ = 0. Our separate communica-
tion focuses on mean currents, in which case we needed only the
slope of the SCGF at λ = 0.20 In practice, we compute the first
derivative numerically by introducing a very small biasing strength
δ = 10−4 and approximating ⟨̄⟩ = ψ′(0) ≈ (ψ(δ) − ψ(−δ))/(2δ).
Starting with the λ = 0 seed ∣π2⟩, the TDVP is run with a timestep
Δt for enough periods to converge the mean steady-state current.
The calculation is stopped once the change in the current esti-
mate between two adjacent periods lies within one percent of its
magnitude, at which point full convergence is assumed. Figure 6
illustrates the convergence of both ⟨vx⟩ ≡ ⟨̄⟩h/Nocc and ψ(−δ) over
20 periods of BTTN TDVP ratchet evolution with a half-occupied
32-site lattice. Both quantities converge in the long-time limit, but
the convergence of current is noticeably faster than that of the
SCGF.

The rate of convergence depends on the frequency of driving,
particularly because the DMRG-generated seed ∣π2⟩ is constructed
to match the low-frequency limit. For this reason, the low-frequency
current can converge within one or two periods of TDVP evolu-
tion. At high frequencies, it is necessary to run tens or hundreds of
periods to allow ∣π2⟩ time to evolve into the time-periodic steady
state. One could converge more quickly by instead seeding with a
high-frequency-limit eigenvector, the steady state of (W1 +W2)/2,
but we found it sufficient (and simpler) to use the one seed for all
frequencies.

The TDVP methodology extends beyond the small-λ regime,
granting access also to fluctuations of ̄. These current fluctua-
tions are characterized by a large deviation rate function I(̄),
computed as a Legendre transform of ψ(λ).33 In non-interacting
ratchets, current statistics have previously been computed using
a SCGF in models that are analytically solvable48 or numeri-
cally tractable.19 Our work extends these efforts to the interacting,
many-particle regime. Figure 5 shows that one can compute the
distribution for the current averaged over n periods of driving,
P(̄) ≃ e−nI(̄ ), by first performing the TDVP tensor network cal-
culations of ψ(λ) for various strengths of biasing λ. As a practical
matter, these TDVP calculations are most stable if seeded by a state

FIG. 7. Period-averaged mean particle velocity computed from the TDVP as a function of the maximal bond dimension. Average particle velocities for a 32-site lattice are
plotted against m for Nocc = 4 (a), 8 (b), 12 (c), and 16 (d) with driving frequencies f = 100, 500, and 1000. TDVP calculations with Nocc = 4, 8, and 12 used Δt = 10−6. The
Nocc = 16 calculations used Δt = 10−7 to mitigate numerical instabilities that were especially prominent for m < 150. The DMRG fails to converge when m is very small,
particularly for high occupancy. For these small m values, the TDVP calculation was not performed because it could not be seeded by ∣π2⟩. Average particle velocities
obtained from Gillespie sampling are represented by horizontal lines, whose thicknesses match three standard errors. As the number of particles occupying the lattice
increases, the required m increases.
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that approximates the steady-state ∣π(λ)⟩t . We start by perform-
ing λ = 0 calculations and then increase and decrease λ in steps,
seeding each calculation by a converged steady-state for a nearby
value of λ.

C. Comparison with Monte Carlo sampling
As a variational method, the TDVP is not assured to work for

small m. We validate that the tensor network ansatz indeed pro-
vides a good approximation by comparing with kinetic Monte Carlo
sampling of the discrete-state jump process via Gillespie sampling.
Due to switches between W1 and W2, however, waiting times for
a hop no longer come from an exponential distribution and the
usual Gillespie algorithm must be modified. Anderson49 developed
a rejection-based stochastic simulation algorithm (RSSA) to han-
dle Markovian jump processes with arbitrary time dependencies.
Because our 1D system relies on a square wave driving protocol,
the usual Gillespie algorithm can be modified even more simply.
We describe the specific algorithm in Appendix E. To estimate mean
currents, 512 independent Gillespie trajectories were averaged. Each
trajectory was allowed to relax to its time-periodic steady state by a
burn-in lasting t0 = 0.01 followed by a measurement of the current
generated after an additional time tobs = 100.

These Gillespie calculations of mean currents are simpler and
less expensive than the tensor network methodology, but the TDVP
approach offers some unique benefits. Figure 5 illustrates that
the TDVP calculations accurately predict rare current fluctuations,
even fluctuations that are more rare than can be readily observed
by straightforward unbiased Gillespie sampling. Furthermore, the
TDVP approach naturally generalizes to W(t) with an arbitrary
time-dependence, whereas our Gillespie approach of Appendix E is
specialized to the square-wave temporal driving. More general time
dependence would require a more costly Gillespie strategy, such as
RSSA.

D. TDVP with varied bond dimensions
The computational expense of the TDVP grows rapidly with

the maximum bond dimension m. Consequently, to practically com-
pute steady state properties from the TDVP, it is essential that m can
be kept small while maintaining accuracy. We numerically probed
the needed bond dimension by repeating the TDVP calculations on
an N = 32 lattice with a range of m values, adjusted via the DMRG
seed ∣π2⟩. We repeated these calculations for a range of driving fre-
quencies and Nocc values. An optimal TDVP timestep depends on
both N and Nocc. Too large a timestep results in numerical instability
and convergence issues; too small makes a calculation unnecessarily
costly. To compare the bond dimension results most simply, we used
a fixed timestep of Δt = 10−6, except for the case of Nocc = 16, which
required Δt = 10−7 to converge.

The dependencies on the maximum bond dimension are shown
in Fig. 7. In all cases, the TDVP current tends to the value obtained
from Gillespie simulation with a large enough m. The more this
bond dimension threshold increases, the more the particles occupy
the lattice, as rationalized by the vast increase in the number of
states accessible by the TDVP as particles are added to the lat-
tice. When the lattice is occupied by only four particles, a max-
imal bond dimension of merely 30 is sufficient for the TDVP

to produce accurate ratchet currents within the driving frequency
range considered, whereas the required maximal bond dimension
increases dramatically (to around 180) for a half-occupied lattice
(Nocc = 16).

V. DISCUSSION
We have illustrated that a BTTN with a tractable maximum

bond dimension is sufficient to propagate a distribution over many-
particle states evolving under a time-periodic protocol. The more
conventional Gillespie approach evolves a single trajectory at a time
and then averages over the trajectories. Propagating the distribu-
tion via the TDVP complements this strategy and offers several
potential benefits. First, as shown in Fig. 5, the TDVP approach
naturally gives information about both typical and rare events at
comparable computational expense. While Gillespie sampling can
also be biased to probe rare events, these calculations typically
require significantly more computational power than the unbiased
sampling of typical events. Second, the TDVP approach naturally
generalizes to rate operators W with arbitrary time dependencies,
a situation that can be quite challenging for Gillespie sampling.
Finally, our calculations have been repeated for different system
parameters, such as the frequency f . In the case of Gillespie sam-
pling, the change in parameters demands an entirely new batch of
simulated trajectories. The previous calculations do not speed up
the next batch, which has to be sampled from scratch. By contrast,
the TDVP calculations can leverage previous calculations to more
rapidly converge steady-state dynamics with similar system para-
meters. We wrote about seeding our TDVP evolution from the state
∣π2⟩, but it can also be seeded from the converged state reached by a
previous calculation. For example, suppose that one needs to com-
pute ψ(λ) for various frequencies. The converged calculation with
frequency f1 and biasing strength λ will have settled into a time-
periodic state ∣π(λ, f1)⟩t , which can be the initial state for the TDVP
dynamics used to estimate ψ(λ) at frequency f2. Depending on the
application, we anticipate that this ability to leverage previous cal-
culations could warrant the extra complexity of the tensor network
approach.

The present work is an initial attempt to employ tensor net-
works to treat time-periodic steady states in many-particle classical
stochastic dynamics. Given the exceptional advances in tensor net-
work methodologies, we anticipate future improvements to the
stability and efficiency of the types of calculations we have described.
Efficient new ways to compute time-evolution operators,50 adaptive
timesteps, and algorithms that adaptively construct tree tensor net-
works based on the structure of W51 could all offer a path to future
optimizations and improvements.
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APPENDIX A: MATRIX PRODUCT OPERATOR (MPO)
REPRESENTATION OF TILTED OPERATORS

Equation (13) gives a compact representation of Wk(λ) that
sums over all nearest-neighbor pairs of sites around the periodic
boundary conditions. It is convenient, however, to deconstruct this
sum in terms of a product of operator-valued vectors and matri-
ces. The decomposition can be performed identically for each k.
For compactness, we suppress the subscript k and write the matrix
product as

W(λ) =W(1)W(2) ⋅ ⋅ ⋅W(N), (A1)

where W(1) is a one-by-ten row vector, W(N) is a ten-by-one col-
umn vector, and the other W(i) values are ten-by-ten matrices. By
factorizing Eq. (13) in this manner, the tilted rate matrix is seen to
be an MPO with each W(i) corresponding to a shaded gray circle in
Fig. 2(a). The ITensor library52 contains an AutoMPO function that
factorizes a sum like Eq. (13) into an explicit MPO. Alternatively, a
finite-state machine can be employed37 to derive the factorized local
tensors for sites 1, i = 2, . . . , N − 1, and N, which are given by

W(1) = (0 r1→2eλa −r1→2n −r2→1v r2→1e−λa† r1→N e−λa −r1→N n −rN→1v rN→1eλa†
I),

W(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I 0 0 0 0 0 0 0 0 0

a† 0 0 0 0 0 0 0 0 0

v 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0 0 0

a 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 I 0

0 ri→i+1eλa −ri→i+1n −ri+1→iv ri+1→ie−λa† 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

W(N) = (I a† v n a a† v n a 0)
T

.

(A2)

APPENDIX B: BTTN ISOMETRIZATION PROCEDURE

As discussed in Sec. III B, an important step in DMRG, TDVP,
and other BTTN methods is the isometrization or orthogonaliza-
tion of the BTTN about a tensor A[l,i]. Reference 17 provides a
particularly thorough discussion of the process. Here, we outline
the essential steps. With the help of the gauge freedom discussed
in Sec. III B, the goal is for node [l, i] to become the orthogonal-
ity center of the tree. This procedure relies on a series of singular
value decompositions (SVDs) on all tensors but A[l,i], mapping ten-
sor A[a,b] to a new tensor Λ[a,b]→[a′ ,b′]. The superscript denotes that
the new tensor at node [a, b] can now be thought of as having an

orientation that points at the orthogonality center. This orienta-
tion is possible by the fact that there exists a unique path along the
BTTN linking each node to [l, i]. Because [a′, b′], a node neigh-
boring [a, b], is assumed to lie along the path connecting [a, b] to
[l, i], [a, b] must be orthogonalized about [a′, b′]. Isometrization
of the BTTN is achieved by first performing an SVD on the fur-
thest tensor from [l, i] and repeating the process, performing the
next SVD on the neighboring tensor until all tensors in the tree
are oriented toward the orthogonality center (see Fig. 8). If we
assume that, without loss of generality, [a′, b′] is the right child
of [a, b] ([a′, b′] ≡ [a + 1, 2b + 1]), then the SVD on [a, b] takes
the form
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FIG. 8. Singular value decomposition (SVD) of tensor A[0,0] as part of the procedure for isometrizing the BTTN about node [2, 0]. In (a), any tensors 3 or more nodes away
from [l, i] have already been properly orthogonalized and are therefore drawn in blue. In (b), A[0,0] undergoes an SVD, resulting in U, S, and V†, as shown in Eq. (B1).
The product SV† is depicted as a small gray square. In (c), SV† is absorbed into the neighboring tensor A[1,0] and U becomes the new orthogonal tensor on node [0, 0]
(Λ[0,0]→[1,0]).

A[a,b]
αβγ = ∑

n
UαβnSnV†

nγ. (B1)

The orthogonal tensor U becomes Λ[a,b]→[a′ ,b′], while SV† is
absorbed into the neighboring tensor on the path toward [l, i].

The SVD is useful for two reasons. First, because each Λ is
constructed as the orthogonal tensor of the SVD, consequently,

∑
αβ
Λ[a,b]→[a′ ,b′]†
αβγ Λ[a,b]→[a′ ,b′]

αβγ = I, (B2)

where I is the identity matrix. Second, it is natural to limit the bond
dimension to not exceed m by retaining only the largest m singular
values when decomposing

A[a,b]
αβγ =

m

∑
n=1

UαβnSnV†
nγ. (B3)

APPENDIX C: TDVP FOR THE BTTN

The core idea of the TDVP is to replace the evolution of ∣p⟩ in
Eq. (4) with the evolution of the set of tensors [A] that parameterize
the BTTN state ∣p[A]⟩. While the dynamics in Eq. (4) could leave
the manifold of BTTN states, MBTTN, TDVP projects each infinites-
imal time evolution onto MBTTN. To develop such a projection for
an MPS5 and a TTN,17 it is necessary to employ tools of differential
geometry. Most significantly, infinitesimal changes to a state ∣p[A]⟩
live in a tangent space T∣p[A]⟩ consisting of only those changes that
remain on the manifold MBTTN. A key insight of Haegeman et al.4,53

was that the projector onto this tangent space, P̂T∣p[A]⟩ , could be con-
structed and utilized in the time propagation of the TDVP equation
of motion,

∂∣p[A]⟩
∂t

= P̂T∣p[A]⟩W(t)∣p[A]⟩. (C1)

We require a procedure to numerically integrate this Eq. (C1) to
evolve [A] and thus ∣p[A]⟩ in time.

Before describing the integration of the equation of motion, it
is necessary to elaborate upon the tangent space to ultimately con-
struct P̂T∣p[A]⟩ . The tangent space at ∣p[A]⟩ is spanned by the partial

derivatives of ∣p[A]⟩ with respect to tensors A(i)Qi ,Si
for all i = 1, . . . , χ.

An arbitrary vector in that space, ∣Θ[B]⟩, is parameterized by a set of
tensors [B],

∣Θ[B]⟩ =
χ

∑
i=1

B(i)Qi ,Si

∂∣p[A]⟩
∂A(i)Qi ,Si

= ∑
S1 ,...,Sχ
Q1 ,...,Qχ

χ

∑
i=1

A(1)Q1 ,S1
, . . . , B(i)Qi ,Si

, . . . , A(χ)Qχ ,Sχ ∣s1, . . . , sN⟩. (C2)

Each term in the sum has the same form as Eq. (15) except A(i)Qi ,Si
has

been replaced by B(i)Qi ,Si
. In fact, for the BTTN architecture, Eq. (C2)

can be compactly re-expressed in a form analogous to Eq. (17),

∣Θ[B]⟩ = ∑
[l,i]
∑
α,β,γ

B[l,i]αβγ ∣P
[l−1,i/2]
α ⟩∣L[l+1,2i]

β ⟩∣R[l+1,2i+1]
γ ⟩. (C3)

The analogy with Eq. (17) goes beyond the decomposition in
terms of parent, left leg, and right leg environment tensors. There is
also a gauge freedom to be exploited. In this case, given a set [B] that
yields a tangent vector ∣Θ[B]⟩, one could construct the same tangent
vector using [B + B] for any [B] in the kernel space, i.e., ∣Θ[B]⟩ = 0.
To avoid a tangent space with an over-complete basis, it is necessary
to fix the gauge, effectively choosing a single element from this kernel
space.

To demonstrate the gauge fixing, we introduce some new nota-
tion. We denote by [n, j] a general reference node on the graph; it is
standard to choose some [n, j] to be the final node along a BTTN
sweeping sequence. Throughout this work, we assign [n, j] to the
network’s bottom right leaf ([L − 1, N/2 − 1]). Moreover, we have
until now expressed auxiliary indices within a BTTN with α, β, and
γ. As depicted in Fig. 3(c), α labeled an edge to a parent, β to a left
child, and γ to a right child. The reference node [n, j] is closest to the
α, β, or γ index of the node at [l, i]. We designate this closest index
ρ[l,i], emphasizing that it can be the α,β, or γ index depending on the
location of node [l, i]. At each node, we denote the other two indices
by q1 and q2. As in Appendix B, we can take the tensor at node [l, i],
i.e., A[l,i]ρ[l,i] ,q1 ,q2 , and orthogonalize this tensor about any of the three
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neighboring nodes. We use the notation Λ[l,i]→q for the tensor that
results from reorthogonalizing about the neighboring node of the q-
index. We can then introduce a set of χ − 1 matrices X associated
with each auxiliary index q and define the tensors [B] in terms of
these matrices as

B [l,i]q1q2ρ[l,i] = ∑
ρ[l,i]′

Λ[l,i]→ρ[l,i]q1q2ρ[l,i]′
Xρ[l,i]′ρ[l,i]

−∑
q1
′
Λ[l,i]→q1

q1
′q2ρ[l,i]

Xq1
′q1 −∑

q2
′
Λ[l,i]→q2

q1q2
′ρ[l,i]

Xq2
′q2. (C4)

By construction, for any choice of matrices X, [B] in Eq. (C4) yields
∣Θ[B]⟩ = 0.17 Moreover, the X matrices uniquely specify elements
of this kernel space, so fixing the gauge is equivalent to choosing a
particular choice of X. In practice, this choice is imposed implicitly
by requiring that [B] that parameterizes a tangent vector must satisfy
χ − 1 constraints of the form

∑
q1 ,q2

B[l,i]q1q2ρ[l,i]′
†
Λ[l,i]→ρ[l,i]q1q2ρ[l,i] = 0. (C5)

This set of constraints establishes a gauge that is particularly con-
ducive to efficient computations of the inner product between two
tangent vectors. A direct consequence of the gauge fixing is that this
inner product involves only products over two tensors at the same
node, a form reminiscent of Eq. (18), but now with a summation
over all nodes [l, i],

⟨Θ[B′]∣Θ[B]⟩ = ∑
l,i
∑
α,β,γ

B′[l,i]]αβγ
†
B[l,i]αβγ . (C6)

Having seen how constrains of the form (C5) serve to fix a
tangent vector gauge, we are finally in a position to compute the pro-
jector via a minimization problem. Given an arbitrary vector in the
full Hilbert space, ∣Ξ⟩, the projector P̂T∣p[A]⟩ maps that state onto the
state along the BTTN manifold. Hence, P̂T∣p[A]⟩ ∣Ξ⟩ = ∣Θ[B]⟩, where
∣Θ[B]⟩ solves

min
B
∥∣Θ[B]⟩ − ∣Ξ⟩∥2. (C7)

Due to the gauge fixing, the minimization problem of Eq. (C7) must
actually be replaced by a constrained minimization problem that
additionally imposes the constraints of Eq. (C5),

min
B

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
[l,i]
∑
α,β,γ
(B[l,i]αβγ

†
B[l,i]αβγ − B[l,i]αβγ

†
F[l,i]αβγ − F[l,i]αβγ

†
B[l,i]αβγ)

− ∑
[l,i]
≠[n,j]

∑
ρ[l,i]
ρ[l,i]′

Γ[l,i]ρ[l,i]ρ[l,i]′∑
q1 ,q2

B[l,i]q1q2ρ[l,i]′
†
Λ[l,i]→ρ[l,i]q1q2ρ[l,i]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (C8)

where F[l,i]αβγ = ⟨P
[l−1,i/2]
α , L[l+1,2i]

β , R[l+1,2i+1]
γ ∣Ξ⟩ and Γ[l,i]ρ[l,i]ρ[l,i]′

are

Lagrange multipliers that impose the gauge fixing constraints. Solv-
ing Eq. (C8) leads to the following expression for the [B] tensors at
all nodes but the bottom right leaf ([l, i] ≠ [n, j]),

B[l,i]q1q2ρ[l,i] = F[l,i]q1q2ρ[l,i] − ∑
ρ[l,i]′

Λ[l,i]→ρ[l,i]q1q2ρ[l,i]′
G[l,i]ρ[l,i]′ρ[l,i]

, (C9)

where

G[l,i]ρ[l,i]′ρ[l,i]
= ∑

q1 ,q2

Λ[l,i]→ρ[l,i]q1q2ρ′[l,i]
F[l,i]q1q2ρ[l,i]. (C10)

The first term of Eq. (C9) could be computed as the inner prod-
uct between ∣Ξ⟩ and the tensor product of the three environment
tensors ⟨P∣, ⟨L∣, and ⟨R∣, each of which contracts over the parent,
left child, and right child branches from [l, i]. The second term of
Eq. (C9) has a similar simplification but in terms of two different
environment tensors denoted by ∣Φ⟩ and ∣Ψ⟩. In terms of these envi-
ronment tensors, G[l,i]ρ[l,i]′ρ[l,i] = ⟨Φ

[l,i]
ρ[l,i]′

,Ψ[l,i]ρ[l,i] ∣Ξ⟩. In the special case

that [l, i] = [n, j], we simply have B[n,j] = F[n,j]. Inserting the solution
for [B] of Eq. (C9) into Eq. (C3) thus gives an explicit expression for
the tangent space projector,

P̂T∣p[A]⟩ = ∑
[l,i]

P̂[l−1,i/2]
P ⊗ P̂[l+1,2i]

L ⊗ P̂[l+1,2i+1]
R − ∑

[l,i]
≠[n,j]

P̂[l,i]Φ ⊗ P̂[l,i]Ψ ,

(C11)
in terms of projectors for the five different environment tensors as
follows:

P̂[a,b]
P = ∑

q
∣P[a,b]

q ⟩⟨P[a,b]
q ∣, (C12)

P̂[a,b]
L = ∑

q
∣L[a,b]

q ⟩⟨L[a,b]
q ∣, (C13)

P̂[a,b]
R = ∑

q
∣R[a,b]

q ⟩⟨R[a,b]
q ∣, (C14)

P̂[a,b]
Φ = ∑

q
∣Φ[a,b]

q ⟩⟨Φ[a,b]
q ∣, (C15)

P̂[a,b]
Ψ = ∑

q
∣Ψ[a,b]

q ⟩⟨Ψ[a,b]
q ∣. (C16)

Armed with Eq. (C11), we turn our attention back to the TDVP
differential equation [Eq. (C1)] that propagates the tensors [A] for-
ward in time. The projector consists of a positive term involving P̂P,
P̂R, and P̂L. When this positive term acts on W(t) in Eq. (C1), we are
left with an effective rate operator, representing the action of W(t)
in the vector space of the tensor A. Whereas W(t) was a function of
many physical indices, the effective rate operator at tensor [l, i] acts
on a small space depending on only six indices,

[W[l,i]eff (t)]
(α,β,γ),(α′ ,β′ ,γ′)

= ⟨P[l−1,i/2]
α , L[l+1,2i]

β , R[l+1,2i+1]
γ ∣W(t)∣P[l−1,i/2]

α′ , L[l+1,2i]
β′ , R[l+1,2i+1]

γ′ ⟩. (C17)

J. Chem. Phys. 157, 054104 (2022); doi: 10.1063/5.0099741 157, 054104-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

It is therefore possible to map the single tensor A[l,i] forward in
time with timestep Δt/2 according to

∂A[l,i](t)
∂t

=W[l,i]eff (t)A
[l,i](t) (C18)

by approximating the matrix exponential

A[l,i](t + Δt/2) = exp[W[l,i]eff (t)
Δt
2
]A[l,i](t) (C19)

using a Krylov method.46 The algorithm must loop over every node
of the tree, advancing each of these tensors in time.

Additionally, the negative terms of Eq. (C11) must be allowed
to act on W(t) in Eq. (C1). This action also yields an effective
operator,

[K[l,i]eff (t)]
(ρ,ρ′),(ρ′′ ,ρ′′′)

= ⟨Φ[l,i]ρ ,Ψ[l,i]ρ′ ∣W(t)∣Φ
[l,i]
ρ′′ ,Ψ[l,i]ρ′′′ ⟩, (C20)

one built from decomposing the BTTN in terms of the environ-
ment operators that split at the edge associated with [l, i] rather than
the node at [l, i]. These terms have the physical interpretation of
evolving the edges backward in time by Δt/2. After a tensor A[l,i] is
propagated forward byΔt, the BTTN is reorthogonalized around the
next node via an SVD decomposition, generating a time-dependent
bond tensor C[l,i](t + Δt/2) ≡ SV†. Due to the negative term of the
projector, each bond tensor must be mapped backward in time by
Δt/2 in conjunction with the set [A] at the nodes being mapped
forward in time by Δt/2,

C[l,i](t) = exp[−K[l,i]eff (t)
Δt
2
]C[l,i](t + Δt/2). (C21)

APPENDIX D: EIGENSTATE OPTIMIZATION OF BTTN
STATES

As discussed in Sec. IV A, we seed our TDVP calculations with
the steady-state vector for the flat landscape, i.e., the top eigenstate
∣π2⟩ of the rate matrix W2, satisfying

W2∣π2⟩ = ψ2∣π2⟩. (D1)

In general, Eq. (D1) can be expressed as the variational problem

⟨p2∣W2∣π2⟩ − ψ2⟨p2∣π2⟩ = 0 (D2)

solved by making ψ2 = ⟨π2∣W2∣π2⟩/⟨π2∣π2⟩ stationary with respect to
arbitrary perturbations from π2 to p2. In this work, ∣π2⟩ is practically
computed via the density matrix renormalization group (DMRG)
algorithm1,37 made compatible with a binary tree tensor network
(BTTN) ansatz. The DMRG iteratively performs local variational
optimizations over individual tensors, sweeping through the net-
work until ψ2 converges. For a general BTTN representation of some
state ∣p⟩, each local optimization calculation consists of a generalized
eigenvalue problem given by

W[l,i]eff A[l,i] = ψN[l,i]A[l,i], (D3)

where W[l,i]eff is the effective rate operator defined in Eq. (C17) and
N[l,i] is an effective norm obtained by contracting all tensors within

the inner product ⟨p[A]∣p[A]⟩ but A[l,i] and its conjugate transpose.
Conveniently, the loopless property of the BTTN representation ren-
ders possible the construction of a canonical form via the gauge
freedom. The orthogonal basis formed from this particular gauge
turns the norm N[l,i] into the identity matrix, thus transforming
Eq. (D3) into a standard eigenvalue problem, which throughout this
work is, in practice, solved via Arnoldi iteration.

Within a single sweep of the DMRG, a total of χ = N − 1 local
eigenvalue problems of the form shown in Eq. (D3) are solved,
resulting in updates of each individual tensor within the binary tree
tensor network (BTTN), one by one. The initial step within the sin-
gle local update on tensor A[l,i] is to isometrize the BTTN about this
tensor following the algorithm detailed in Appendix B. The next step
is to calculate the one-center effective operator W[l,i]eff and obtain a
new tensor A[l,i] by solving Eq. (D3). If node [l, i] is the final one
to be updated within the sweep, no further actions are needed for
the current tensor. Otherwise, a further orthogonalization step is
needed, this time toward [l′, i′], the next chosen node in the sweep,
accompanied by truncation to a maximal bond dimension m, again
following the procedure described in Appendix B. An entire sweep of
the DMRG involves repeating the steps outlined above once for each
tensor within the BTTN, first following the traversal order defined
in Fig. 3 and then following the same traversal order again but in
reverse.

As mentioned in Sec. IV A, an important step of the DMRG
procedure is to construct a pure state to be chosen as an initial seed.
Typically, a tensor network representation of such a state has the
dimensions of all auxiliary indices set to unity. To allow the DMRG
routine to increase the bond dimensions from one sweep to the
next, optimizations of individual tensors A[l,i] are accompanied by
an enrichment step whose role is to expand the local basis used to
represent one of the bonds in A[l,i] while still keeping the overall
value of the state intact. We implemented this enrichment using the
subspace expansion routine, previously been implemented for the
MPS representation,54 adapted for the BTTN. The main idea behind
subspace expansion is to devise a new set of basis states for one of
the auxiliary indices of tensor A[l,i]αβγ . Without loss of generality, we
assume that this index is γ. This basis change is accomplished by
appending an expansion term P[l,i] to the existing basis,

A[l,i] → Ã [l,i] = [A[l,i] P[l,i]]. (D4)

Similarly, the components of the adjacent right child tensor are
expanded by adding an appropriately sized zero padding,

A[l+1,2i+1] → Ã [l+1,2i+1] =
⎡⎢⎢⎢⎢⎢⎣

A[l+1,2i+1]

0

⎤⎥⎥⎥⎥⎥⎦
. (D5)

Even though the state ∣p⟩ remains unchanged after this basis trans-
formation, the DMRG now has the ability to access states within a
larger BTTN manifold than before. In reality, the exact expansion
term P[l,i] should be taken as the tensor Z[l,i] of the residual

∣Z⟩ =W∣p⟩ − ψ∣p⟩ = ∑
S1 ,...,Sχ
Q1 ,...,Qχ

ZS1
Q1

ZS2
Q2

, . . . , ZSχ
Qχ
∣s1, . . . , sN⟩, (D6)
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where, as in Eq. (16), χ is the number of tensors in the BTTN and
Z[l,i]αβγ ≡ ZQη for some η ≤ χ. However, in practice, these tensors are
difficult to compute and the subspace expansion method instead
relies on the convenient perturbative expansion term,

P[l,i] = κV[l−1,i/2]A[l,i]V[l+1,2i], (D7)

where V[l−1,i/2] and V[l+1,2i] are formed from the contraction of all
tensors within the branch linking the parent and left child of node
[l, i], respectively, to any bottom layer nodes of the ket state ∣p[A]⟩,
the identical contraction within the bra state ⟨p[A]∣, and a contrac-
tion of tensors belonging to the matrix product operator (MPO)
sandwiched between the relevant bra and ket tensors. The para-
meter κ represents a scalar mixing factor whose role is to tune the
contributions of the perturbative terms.

Finally, it must be noted that the rate operators used for our
ratchet system, defined in Eq. (13), conserve the number of particles
in the lattice, and therefore, a separate steady-state distribution exists
for each particle number. Given an arbitrary initial state describ-
ing a lattice occupied by Nocc particles, it is crucial that the DMRG
produces a steady-state distribution for exactly Nocc particles. The
classical occupation representation used in Eq. (13) happens to be
isomorphic to the quantum spin-half basis, so in a sense, one can
say that it conserves the Abelian Sz “quantum number” (QN). As it
turns out, representing the tensors A[l,i] from Eq. (17) in a special
QN-conserving sparse block structure ensures that the total QN of
the state throughout the DMRG routine remains identical to that of
the input state.42 With this representation, seeding the DMRG with
an arbitrary configuration having Nocc of N sites occupied is guaran-
teed to yield the steady-state distribution for Nocc particles upon full
convergence of the DMRG. Additionally, this QN-conserving sparse
structure typically renders calculations both more efficient and less
memory intensive, as many of the tensor blocks are constrained to
be zero.

APPENDIX E: GILLESPIE ALGORITHM FOR SQUARE
WAVE DRIVING

Because the flashing ratchet has a temporal drive with a period
of τ, standard Gillespie sampling55 must be adapted to accommodate
the time-dependent propensities. As in the traditional algorithm,
these propensities are used to compute a target state and a random
waiting time at each step along a trajectory. Where the traditional
algorithm breaks down is in the event that a drawn waiting time
would span both sets of propensities. For example, if the previous
hop occurred during a W1 propagation but the next would not occur
until the W2 propagation, then the waiting time should reflect some
mixture of the W1 and W2 rates.

Letting the time-dependent propensity be denoted by w(t), the
waiting time δt should solve

∫
t0+δt

t0

w(t)dt = ln(1
s
), (E1)

where s ∼ U(0, 1) is a random number drawn uniformly from the
unit interval and t0 is the time of the most recent hop.49 When w(t)
is a constant w, the integral evaluates to wδt, recovering the usual
Gillespie algorithm for drawing waiting times. While it is not as

simple, the integral can be similarly evaluated for the square wave
driving that flips between a rate w1 and another rate w2.

Without loss of generality, let us assume w(t0) = w1. If w(t)
remains w1 until t = t0 + δt, that is, if Mod(t0, τ) + δt < τ/2, then δt
is computed as usual, namely,

δt = (1/w1) ln(1/s). (E2)

If the waiting time δt would pass through the time that the rate
jumps from w1 to w2, then Eq. (E1) instead integrates to give

( τ
2
− t0)w1 + (t0 + δt − τ

2
)w2 = ln(1

s
), (E3)

which, after some algebra, yields

δt = 1
w2
[ln(1

s
) + (w2 −w1)(

τ
2
− t0)]. (E4)

Particularly, when the driving frequency is high, it is possible that
a waiting time δt could pass through the time that w1 switches to
w2 and the time that the rate switches back to w1. In this case, the
waiting time is related to the random number s as

( τ
2
− t0)w1 +

τ
2
w2 + (t0 + δt − τ)w1 = ln(1

s
), (E5)

leading to the waiting time

δt = 1
w1
[ln(1

s
) + (w1 −w2)

τ
2
]. (E6)

One can continue casing out the possibilities, adding more cycles
between w1 and w2 before the next hop occurs. For example, the
next case involves waiting time

δt = 1
w2
[ln(1

s
) + (w2 −w1)(τ − t0)]. (E7)

In practice, one starts by computing the rates w1 and w2 associ-
ated with each possible jump from the current configuration at time
t0. Next, s is drawn and a separate waiting time δt is computed for
each possible hop. w(t0) is set to w1 if Mod(t0, τ) < τ/2 and to w2
otherwise. For a given hop, if Eq. (E2) yields δt consistent with the
first case, meaning that δt is sufficiently short that the square wave
drive will not have switched from W1 to W2 (or from W2 to W1),
then this waiting time is chosen. Otherwise, we proceed to the next
case, inserting s into Eq. (E4) [if w(t0) = w1]. We continue passing
through the cases until the computed δt is consistent with the con-
sidered case for how many square wave flips have been experienced.
Once consistency is achieved, this δt is taken to be the next waiting
time for the proposed transition. Finally, the next chosen transition
is the one with the smallest waiting time.
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“Time-dependent variational principle for quantum lattices,” Phys. Rev. Lett. 107,
070601 (2011).
5J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete,
“Unifying time evolution and optimization with matrix product states,” Phys. Rev.
B 94, 165116 (2016).
6P. Helms, U. Ray, and G. K.-L. Chan, “Dynamical phase behavior of the single-
and multi-lane asymmetric simple exclusion process via matrix product states,”
Phys. Rev. E 100, 022101 (2019).
7M. C. Bañuls and J. P. Garrahan, “Using matrix product states to study the
dynamical large deviations of kinetically constrained models,” Phys. Rev. Lett.
123, 200601 (2019).
8P. Helms and G. K.-L. Chan, “Dynamical phase transitions in a 2D classical
nonequilibrium model via 2D tensor networks,” Phys. Rev. Lett. 125, 140601
(2020).
9Z. Nagy, C. Appert, and L. Santen, “Relaxation times in the ASEP model using a
DMRG method,” J. Stat. Phys. 109, 623–639 (2002).
10Y. Hieida, “Application of the density matrix renormalization group method to
a non-equilibrium problem,” J. Phys. Soc. Jpn. 67, 369–372 (1998).
11K. Temme and F. Verstraete, “Stochastic matrix product states,” Phys. Rev. Lett.
104, 210502 (2010).
12M. Gorissen, J. Hooyberghs, and C. Vanderzande, “Density-matrix
renormalization-group study of current and activity fluctuations near
nonequilibrium phase transitions,” Phys. Rev. E 79, 020101 (2009).
13T. H. Johnson, S. R. Clark, and D. Jaksch, “Dynamical simulations of classical
stochastic systems using matrix product states,” Phys. Rev. E 82, 036702 (2010).
14T. H. Johnson, T. J. Elliott, S. R. Clark, and D. Jaksch, “Capturing expo-
nential variance using polynomial resources: Applying tensor networks to
nonequilibrium stochastic processes,” Phys. Rev. Lett. 114, 090602 (2015).
15E. Carlon, M. Henkel, and U. Schollwöck, “Density matrix renormalization
group and reaction-diffusion processes,” Eur. Phys. J. B 12, 99–114 (1999).
16L. Kohn, P. Silvi, M. Gerster, M. Keck, R. Fazio, G. E. Santoro, and S.
Montangero, “Superfluid-to-Mott transition in a Bose-Hubbard ring: Persistent
currents and defect formation,” Phys. Rev. A 101, 023617 (2020).
17D. Bauernfeind and M. Aichhorn, “Time dependent variational principle for
tree tensor networks,” SciPost Phys. 8, 024 (2020).
18T. Felser, S. Notarnicola, and S. Montangero, “Efficient tensor network ansatz
for high-dimensional quantum many-body problems,” Phys. Rev. Lett. 126,
170603 (2021).
19N. E. Strand, R.-S. Fu, and T. R. Gingrich, “Current inversion in a periodically
driven two-dimensional Brownian ratchet,” Phys. Rev. E 102, 012141 (2020).
20N. E. Strand, H. Vroylandt, and T. R. Gingrich, “Using tensor network states for
multiparticle Brownian ratchets,” J. Chem. Phys. 156, 221103 (2022).
21S. Rahav, J. Horowitz, and C. Jarzynski, “Directed flow in nonadiabatic
stochastic pumps,” Phys. Rev. Lett. 101, 140602 (2008).
22O. Raz, Y. Subaşı, and C. Jarzynski, “Mimicking nonequilibrium steady states
with time-periodic driving,” Phys. Rev. X 6, 021022 (2016).
23G. M. Rotskoff, “Mapping current fluctuations of stochastic pumps to
nonequilibrium steady states,” Phys. Rev. E 95, 030101 (2017).
24A. C. Barato and R. Chetrite, “Current fluctuations in periodically driven
systems,” J. Stat. Mech. 2018, 053207.
25S. Asban and S. Rahav, “No-pumping theorem for many particle stochastic
pumps,” Phys. Rev. Lett. 112, 050601 (2014).
26R. M. da Silva, C. C. de Souza Silva, and S. Coutinho, “Reversible transport of
interacting Brownian ratchets,” Phys. Rev. E 78, 061131 (2008).
27D. McDermott, C. J. O. Reichhardt, and C. Reichhardt, “Collective ratchet
effects and reversals for active matter particles on quasi-one-dimensional
asymmetric substrates,” Soft Matter 12, 8606–8615 (2016).
28O. Kedem, B. Lau, and E. A. Weiss, “How to drive a flashing electron ratchet to
maximize current,” Nano Lett. 17, 5848–5854 (2017).
29O. Kedem, B. Lau, and E. A. Weiss, “Mechanisms of symmetry breaking in a
multidimensional flashing particle ratchet,” ACS Nano 11, 7148–7155 (2017).

30O. Kedem and E. A. Weiss, “Cooperative transport in a multi-particle, multi-
dimensional flashing ratchet,” J. Phys. Chem. C 123, 6913–6921 (2019).
31P. Reimann, “Brownian motors: Noisy transport far from equilibrium,” Phys.
Rep. 361, 57–265 (2002).
32T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, “Inferring dissipation from
current fluctuations,” J. Phys. A: Math. Theor. 50, 184004 (2017).
33H. Touchette, “The large deviation approach to statistical mechanics,” Phys.
Rep. 478, 1–69 (2009).
34J. L. Lebowitz and H. Spohn, “A Gallavotti–Cohen-type symmetry in the large
deviation functional for stochastic dynamics,” J. Stat. Phys. 95, 333–365 (1999).
35V. Lecomte, C. Appert-Rolland, and F. van Wijland, “Thermodynamic formal-
ism for systems with Markov dynamics,” J. Stat. Phys. 127, 51–106 (2007).
36L. Chabane, R. Chétrite, and G. Verley, “Periodically driven jump processes
conditioned on large deviations,” J. Stat. Mech. 2020, 033208.
37U. Schollwöck, “The density-matrix renormalization group in the age of matrix
product states,” Ann. Phys. 326, 96–192 (2011).
38G. Vidal, “Efficient classical simulation of slightly entangled quantum
computations,” Phys. Rev. Lett. 91, 147902 (2003).
39V. Murg, F. Verstraete, Ö. Legeza, and R. M. Noack, “Simulating strongly cor-
related quantum systems with tree tensor networks,” Phys. Rev. B 82, 205105
(2010).
40Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum many-
body systems with a tree tensor network,” Phys. Rev. A 74, 022320 (2006).
41M. Gerster, P. Silvi, M. Rizzi, R. Fazio, T. Calarco, and S. Montangero,
“Unconstrained tree tensor network: An adaptive gauge picture for enhanced
performance,” Phys. Rev. B 90, 125154 (2014).
42P. Silvi, F. Tschirsich, M. Gerster, J. Jünemann, D. Jaschke, M. Rizzi, and
S. Montangero, “The tensor networks anthology: Simulation techniques for
many-body quantum lattice systems,” SciPost Phys. Lect. Notes 8, 1 (2019).
43G. Vidal, “Efficient simulation of one-dimensional quantum many-body
systems,” Phys. Rev. Lett. 93, 040502 (2004).
44F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, “Matrix product density oper-
ators: Simulation of finite-temperature and dissipative systems,” Phys. Rev. Lett.
93, 207204 (2004).
45G. Vidal, “Classical simulation of infinite-size quantum lattice systems in one
spatial dimension,” Phys. Rev. Lett. 98, 070201 (2007).
46M. Hochbruck and C. Lubich, “On Krylov subspace approximations to the
matrix exponential operator,” SIAM J. Numer. Anal. 34, 1911–1925 (1997).
47M. Yang and S. R. White, “Time-dependent variational principle with ancillary
Krylov subspace,” Phys. Rev. B 102, 094315 (2020).
48A. W. C. Lau, D. Lacoste, and K. Mallick, “Nonequilibrium fluctuations and
mechanochemical couplings of a molecular motor,” Phys. Rev. Lett. 99, 158102
(2007).
49D. F. Anderson, “A modified next reaction method for simulating chemical sys-
tems with time dependent propensities and delays,” J. Chem. Phys. 127, 214107
(2007).
50B. Vanhecke, D. Devoogdt, F. Verstraete, and L. Vanderstraeten, “Simulating
thermal density operators with cluster expansions and tensor networks,”
arXiv:2112.01507 (2021).
51G. Ferrari, G. Magnifico, and S. Montangero, “Adaptive-weighted tree tensor
networks for disordered quantum many-body systems,” Phys. Rev. B 105, 214201
(2021).
52M. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor software library
for tensor network calculations,” arXiv:2007.14822 (2020).
53J. Haegeman, T. J. Osborne, and F. Verstraete, “Post-matrix product state
methods: To tangent space and beyond,” Phys. Rev. B 88, 075133 (2013).
54C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, “Strictly single-site
DMRG algorithm with subspace expansion,” Phys. Rev. B 91, 155115 (2015).
55D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”
J. Phys. Chem. 81, 2340–2361 (1977).

J. Chem. Phys. 157, 054104 (2022); doi: 10.1063/5.0099741 157, 054104-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/physrevb.94.165116
https://doi.org/10.1103/physrevb.94.165116
https://doi.org/10.1103/PhysRevE.100.022101
https://doi.org/10.1103/physrevlett.123.200601
https://doi.org/10.1103/physrevlett.125.140601
https://doi.org/10.1023/a:1020462531383
https://doi.org/10.1143/jpsj.67.369
https://doi.org/10.1103/physrevlett.104.210502
https://doi.org/10.1103/PhysRevE.79.020101
https://doi.org/10.1103/PhysRevE.82.036702
https://doi.org/10.1103/PhysRevLett.114.090602
https://doi.org/10.1007/s100510050983
https://doi.org/10.1103/physreva.101.023617
https://doi.org/10.21468/scipostphys.8.2.024
https://doi.org/10.1103/physrevlett.126.170603
https://doi.org/10.1103/PhysRevE.102.012141
https://doi.org/10.1063/5.0097332
https://doi.org/10.1103/physrevlett.101.140602
https://doi.org/10.1103/physrevx.6.021022
https://doi.org/10.1103/PhysRevE.95.030101
https://doi.org/10.1088/1742-5468/aabfc5
https://doi.org/10.1103/PhysRevLett.112.050601
https://doi.org/10.1103/PhysRevE.78.061131
https://doi.org/10.1039/c6sm01394e
https://doi.org/10.1021/acs.nanolett.7b03118
https://doi.org/10.1021/acsnano.7b02995
https://doi.org/10.1021/acs.jpcc.9b00344
https://doi.org/10.1016/s0370-1573(01)00081-3
https://doi.org/10.1016/s0370-1573(01)00081-3
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1023/a:1004589714161
https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1088/1742-5468/ab74c4
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1103/physrevb.82.205105
https://doi.org/10.1103/physreva.74.022320
https://doi.org/10.1103/physrevb.90.125154
https://doi.org/10.21468/scipostphyslectnotes.8
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/physrevlett.93.207204
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1137/s0036142995280572
https://doi.org/10.1103/physrevb.102.094315
https://doi.org/10.1103/physrevlett.99.158102
https://doi.org/10.1063/1.2799998
http://arxiv.org/abs/2112.01507
https://doi.org/10.1103/PhysRevB.105.214201
http://arxiv.org/abs/2007.14822
https://doi.org/10.1103/physrevb.88.075133
https://doi.org/10.1103/physrevb.91.155115
https://doi.org/10.1021/j100540a008

