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Abstract
Complex physical dynamics can often be modeled as a Markov jump process 
between mesoscopic configurations. When jumps between mesoscopic states 
are mediated by thermodynamic reservoirs, the time-irreversibility of the 
jump process is a measure of the physical dissipation. We rederive a recently 
introduced inequality relating the dissipation rate to current fluctuations 
in jump processes. We then adapt these results to diffusion processes via a 
limiting procedure, reaffirming that diffusions saturate the inequality. Finally, 
we study the impact of spatial coarse-graining in a two-dimensional model 
with driven diffusion. By observing fluctuations in coarse-grained currents, 
it is possible to infer a lower bound on the total dissipation rate, including 
the dissipation associated with hidden dynamics. The tightness of this bound 
depends on how well the spatial coarse-graining detects dynamical events that 
are driven by large thermodynamic forces.

Keywords: entropy production, large deviation theory, coarse graining, 
nonequilibrium fluctuations
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1. Introduction

Experiments capable of probing molecular-scale dynamics have led to a wealth of data about 
the operation of nanoscale machines [1–3]. Like their macroscopic counterparts, nanoma-
chines  convert free energy from the environment into useful work. Due to molecular fluctua-
tions, however, nanoscale machines behave stochastically. Though the stochasticity renders 
nanomachines less predictable, the fluctuations also offers a unique tool to deduce additional 
physical  properties of the machine. Indeed, the fluctuation-dissipation theorem (FDT) dem-
onstrates that near- equilibrium fluctuations allow one to deduce the nonequilibrium response 
to small perturbations, an idea that has become a central theme of statistical mechanics [4–9]. 
Analogous exploitation of  far-from-equilibrium  fluctuations is highly desirable [10–14], par-
ticularly for studying living systems [15–17].

In this work, we demonstrate how it is possible to extract information from nonequilibrium 
fluctuations under general steady-state conditions. Our central assumption is that the mesoscale 
dynamics, in a quantum or a classical system, can be described by a Markovian stochastic process. 
For example, the Markovian mesoscopic description applies to biochemical kinetics of enzymatic 
reactions. In this context, dynamical fluctuations have been used to constrain proposed models 
for enzymatic pathways, providing bounds on the number of distinct intermediate states [18, 19]. 
More recently, advances in the theory of Markov processes [20–23] have been used to relate the 
dynamical fluctuations to the physical dissipation rate of the nonequilibrium dynamics [24–27]. 
This paper reviews and extends that connection between fluctuations and dissipation, a connection 
which can be thought of as a generalization of the FDT. Where the FDT offers an equality—by 
measuring fluctuations we may determine the dissipation exactly [28]—the far-from-equilibrium 
analog guarantees an inequality: the extent of fluctuations sets a lower bound on the dissipation 
rate. Hence experimental observations of macroscopic, coarse-grained fluctuations provide enough 
information to estimate a bound on the dissipation rate of a process far from equilibrium.

In this paper, we study this generalization of the FDT bound from the perspective of coarse-
graining, a viewpoint which we anticipate will complement experimental applications. After 
reviewing the formalism of Markov jump processes in section 2, we consider the consequence of 
temporal coarse-graining in section 3. By focusing on dynamical quantities which are time-aver-
aged over long trajectories, we arrive at the so-called Level 2.5 large deviations, which quantify 
dynamical fluctuations in the jump process [20–23]. Mirroring our previous work [26], section 4 
develops our central relationship between nonequilibrium dynamical fluctuations and dissipa-
tion. In its most general form, the relationship pertains to a fluctuating vector quantity in the 
space of all microscopic currents; the implication for scalar currents is detailed in section 5. In 
addition to the temporal coarse-graining, we investigate the role of spatial resolution by studying 
two limits: a diffusive limit in section 6 and the spatial coarse-graining of a particular diffusion 
process in section 7. A consequence of the coarse-graining is that the macrostate dynamics may 
not be Markovian. Remarkably, even without the Markov property, coarse-grained fluctuations 
can bound the dissipation rate so long as the macroscopic dynamics emerges from an underlying 
Markovian description, suggesting that suitable analysis of dynamical fluctuations can comple-
ment existing methods for deducing dissipation from time series data [29].

2. Markov jumps on graphs

2.1. Dissipation

Before studying the consequences of coarse-graining, we first build a detailed dynamical model. 
At the smallest scales, the microscopic laws of physics are Markovian and deterministic. By 
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clustering microscopic configurations into sufficiently many mesostates, mesocopic dynam-
ics may often be described by a continuous-time Markov jump process on the set of coarse-
grained states [30–32]. Such a model can be constructed, for example, from atomistic 
simulations, as in the case of protein conformational dynamics [33, 34]. The jump process 
can be viewed as a random walk on a graph, with each of the N vertices corresponding to one 
of the possible mesostates. Figure 1 depicts an example with twelve states. Any two vertices,  
y and z, are connected by an edge when the system can jump between y and z. We denote 
the rate for transitioning from y to z by r(y, z) and require a non-vanishing rate r(z, y) for the 
reverse transition.

The probability of occupying state y at time t, pt( y ), evolves according to the master 
equation

∂pt(y)
∂t

= −
∑
z�=y

j pt(y, z), (1)

where jp(y, z)  =  p(y)  r(y, z)  −  p(z)r(z, y) is the current passing from y to z. Following Bertini 
et al [22, 23], the superscript p highlights that this current is a function of the density. At long 
times, the probability of occupying mesostate y approaches the steady-state value,

π(y) ≡ lim
t→∞

pt(y). (2)

Similarly, the current passing from state y to z approaches jπ(y, z) = π(y)r(y, z)− π(z)r(z, y) 
in the steady state. We will use bold symbols to represent vectors and let context distinguish 
whether the vector is indexed over vertices (as in π) or edges (as in jπ and r).

An equilibrium system obeys detailed balance, meaning that all steady-state currents 
vanish, jπ = 0. Non-vanishing currents may be generated if the system couples to multiple 
external reservoirs with differing intensive parameters, e.g. temperatures, pressures, or chemi-
cal potentials. The environment, which we model as a set of infinitely-large reservoirs, can 

Figure 1. Example of a Markov jump process: mesostates are shaded according to the 
steady-state density π. Black arrows on the edges label the transition rates, and the 
colored edges indicate the steady-state current across each edge, jπ.

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004
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therefore lead the dynamics to break detailed balance, i.e. it need not be the case that mes-
ostates y and z satisfy π(y)r(y, z) = π(z)r(z, y).

Because the mesoscopic Markov dynamics does not explicitly model the state of the ther-
modynamic reservoirs (how much energy and how many particles are in the baths), the impact 
of the reservoirs appears implicitly in the rates r. As an example, suppose mesostate y has a 
(free) energy lower than that of mesostate z by an amount ∆E. The transfer of energy from 
a thermal reservoir at inverse temperature β can induce an uphill transition from y to z. If we 
assume the mesoscopic configurations are locally equilibrated with the thermal reservoir, then 
the transitions must obey detailed balance with respect to the reservoir’s equilibrium distribu-
tion peq [35]. This local detailed balance condition, peq(y)r(y, z) = peq(z)r(z, y), yields

r(y, z)
r(z, y)

=
peq(z)
peq(y)

= exp(−β∆E), (3)

which relates the ratio of transition rates to the energy flux from the reservoir. These same 
arguments apply to other types of reservoirs, e.g. a particle reservoir at constant chemical 
potential. The ratio of transition rates, more generally, is expressed in terms of the entropy 
change in the reservoir, ∆S:

r(y, z)
r(z, y)

= exp(∆S). (4)

Satisfying local detailed balance with the various reservoirs does not imply that the Markov 
dynamics obeys detailed balance. When coupled to multiple reservoirs with incompatible 
equilibrium states, the Markov dynamics breaks detailed balance, but equation (4) still relates 
the mesoscopic rates to the flow of entropy from the reservoirs. For density p, we quantify the 
broken detailed balance by

F p(y, z) = ln
p(y)r(y, z)
p(z)r(z, y)

, (5)

which we call the thermodynamic force because it measures how much free energy the baths 
must provide in order for the system to transition from y to z4. In the steady state, the rate of 
that free energy transfer is given by

σπ(y, z) = jπ(y, z)Fπ(y, z). (6)

We call this quantity the dissipation rate for the edge connecting y and z. The total dissipation 
rate for the system is computed by summing the dissipation rates for all edges:

Σπ = jπ · Fπ ≡
∑
y<z

jπ(y, z)Fπ(y, z). (7)

The sum runs over pairs of states with y  <  z to avoid double counting.
Computing the dissipation rate via equation (7) is  all-but- impossible for complicated prob-

lems. The computation requires that all possible mesostates be identified, that the rates for 
transitions between these mesostates be measured, and that the steady-state density be com-
puted. Even the simplest of these tasks, identifying the set of mesostates, is frequently imprac-
tical. More commonly, it is only possible to monitor transitions between some coarse-grained 
macrostates. With this limitation in mind, we set out to infer the dissipation rate on the basis of 
fluctuations in finite-time stochastic trajectories. Our strategy merely provides a lower bound 

4 Fp(y, z) is the difference between the entropy gain of the bath ∆S = ln r(y, z)/r(z, y) and the gain in Shannon 
entropy of the system ln p(z)/p(y).

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004
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on the dissipation rate, but may be applied even when we only observe macrostate transitions, 
a point we return to in section 7.

2.2. Fluctuations

An infinitely long trajectory samples all configurations in proportion to the steady-state distri-
bution, but a single finite-time trajectory has fluctuations. Consider one realization of the jump 
process, initialized in the steady state and observed for a long but finite time T. We let x(t) denote 
the identity of the occupied mesostate at time t. Given this trajectory, an unbiased estimate of the 
steady-state density at mesostate y is found by measuring the fraction of time spent in y:

p(y) =
1
T

∫ T

0
dt δx(t),y, (8)

with Kronecker delta δα,β. This time-averaged density p is the empirical density. Despite sim-
ilar notation, the empirical density should not be confused with the instantaneous probability 
of occupying state y at time t, which we have denoted pt( y ). The instantaneous density pt( y ) 
depends explicitly on time t, whereas the empirical density p( y ) depends on the timescale T 
over which the density was averaged.

Analogous to the empirical density, the empirical current from y to z counts the rate of 
transitions from y to z, less those from z to y:

j(y, z) ≡ 1
T

∫ T

0
dt δx(t−),yδx(t+),z − δx(t−),zδx(t+),y. (9)

The notation x(t±) is shorthand for the configuration immediately before or immediately after 
time t. Note that j(y, z) differs from the density-dependent current jp(y, z). The former reflects 
the number of transitions observed in a stochastic trajectory while the latter is the current that 
one would expect given the empirical density p and the transition rates r.

The probability distribution for the empirical density and current reflects the fluctuations 
anticipated in finite-time experiments or simulations. For large T, this distribution adopts the 
large deviation form

P( p, j) � e−TI( p, j) (10)

with the joint rate function I( p, j) measuring, on an exponential scale, the chance of observ-
ing fluctuations away from steady-state density π and steady-state current jπ  [36]. We use � 
to indicate asymptotic equivalence, meaning

− 1
T
lnP( p, j) = I( p, j) +O

(
1
T

)
. (11)

The rate function attains a minimum at the steady-state values ( I(π, jπ) ≡ 0) since the steady-
state behavior dominates in the long-time limit. The local curvature of I around its minimum, 
the Hessian, reveals the variance of the empirical fluctuations away from the steady-state 
values. Remarkably, the local curvature can be computed analytically because an explicit 
expression for I( p, j) is known [20–23].

3. Coarse-graining in time

The Markov jump process has rich temporal correlations—after a short time, a system initial-
ized in mesostate y is more likely to be in a neighboring state z than the steady-state prob-
ability π(z) would predict. Though these correlations add complexity to transient dynamics, 
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they die out after some finite correlation time. The empirical density and empirical current can 
be averaged over sufficiently long times T such that the transient dynamics becomes unim-
portant. In this way, p and j can be thought of as the result of temporal coarse-graining with 
a coarse-graining timescale exceeding natural correlation times. In the limit of large T, the 
empirical fluctuations can therefore be mimicked by Poisson point processes, which lack all 
temporal correlations. More specifically, the coarse-grained Markov jump process resembles 
the behavior of a collection of independent Poisson point processes, one per directed edge 
of the graph, which count the number of transition events for each edge in time T. The large 
deviation structure of Poisson processes are particularly simple, providing a heuristic route to 
I( p, j) for a general nonequilibrium jump process. Rigorous derivations of this result utilize a 
technique called Cramér tilting [21]. Rather than recapitulate that argument, we illustrate how 
the form of the jump process rate function originates from a Poisson point process.

3.1. Flows

To explicitly demonstrate that the Markov jump process’ long-time behavior resembles that of 
a collection of Poisson point processes, we first focus on a single type of dynamical event—
hops from mesostate y to z in figure 1. We record the time of each such hop by a blue tick on 
a timeline in figure 2. The average density of ticks is

q(y, z) =
1
T

∫ T

0
dt δx(t−),yδx(t+),z, (12)

the empirical flow rate from y to z [22, 23]. Due to the stochastic nature of the trajectories, the 
spacing between tick marks is variable. Immediately following each y → z event, the system 
is localized in mesostate z, and the next y → z event cannot occur until the system finds its 
way back to mesostate y. This need to reset introduces temporal correlations, quantified by the 
pair-correlation function

g(t) =

〈∑
i<j δ (t − (tj − ti))

q(y, z)

〉
, (13)

with ti denoting the time of the ith  y → z hop. The average in the definition of g(t) is taken over 
the ensemble of long trajectories of length T.

Akin to the pair correlation function of liquid state theory [37], g(t) captures the prob-
ability that, given an event at time 0, another event occurs after a delay time t. The blue curve 
in figure 2 shows g(t) for the flows from state y to z in figure 1. At short times, g(t) exceeds 
one, indicating a propensity for bursty repeated events since the return rate r(z,y) can allow 
multiple y → z events in rapid succession. After slightly longer times, g(t) is less than one; 
trajectories which do not backtrack from z to y only enable the next event upon returning to y 
via a slower, circuitous route. Finally, g(t) approaches 1 for t > τcorr, the timescale on which 
correlations are lost.

These temporal correlations are an important feature of a Markov jump process at short 
times. However, the two-time correlations encoded in g(t) become insignificant at long times, 
for which g(t) → 1, resembling a Poisson point process5. This loss of correlations suggests 
that the probability of observing Q transitions from y to z over a long time T should be asymp-
totically given by a Poisson distribution [30],

5 The Poisson point process lacks correlations, so g(t)  =  1.

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004
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P(Q) =
λQe−λ

Q!
. (14)

The Poisson parameter λ must be chosen to match the steady-state flows in the long time limit, 
〈Q〉 = π(y)r(y, z)T . We note that this condition can be met by choosing λ = Tp(y)r(y, z) if we 
average over both empirical densities and flows. This observation is suggestive of a long-time 
Poisson form with an effective rate that depends on the empirical density p( y ):

Pind( p(y), q(y, z)) � (Tp(y)r(y, z))Tq(y,z)e−Tp(y)r(y,z)

(Tq(y, z))!
, (15)

with the subscript ‘ind’ denoting that we have considered the single edge as independent of the 
other edges. In reality, the statistics of neighboring edges are coupled by a conservation law: 
a trajectory must leave one state to enter another, so the empirical flow conserves probability 
at every mesostate6, which requires

∑
z

(q(y, z)− q(z, y)) = 0 ∀y. (16)

Pind can be thought of as the effective single-edge distribution in the absence of the conserva-
tion law constraint. We stress that Pind should not be confused with the marginal distribution 
for the single-edge statistics, which we will see is much more complicated.

The joint statistics of density and flow across all edges, however, can be simply expressed. 
This simplicity arises because the long-time flow fluctuations on the various edges are coupled 

Figure 2. Pair correlation functions g(t) for Markov dynamics on the graph in 
figure 1 (blue) and for an Poisson point process (orange). Time is reported in the same 
units as the inverse of the rate constants in figure 1. The colored lines are collected 
by sampling from 5000 trajectories, each of length 10 000; the dashed black line 
shows the exact result for a Poisson point process. The inset shows a timeline for the 
events observed in a representative trajectory, with each tick corresponding to the 
time of a hopping event. The Poisson point process is constructed so that it has the 
same average density of tick marks as the on the graph. For times much larger than a 
correlation time τcorr, the hops become uncorrelated, so the fluctuations in the number 
of events asymptotically approaches that of the Poisson point process, equation (15).

6 The initial and final mesostates do not conserve probability—there is a source where the system starts at time zero 
and a sink where it ends at time T, but in the long time limit this effect is insignificant.

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004
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only by the constraint equation (16), which requires that the empirical flow q must conserve 
probability. When the empirical flow is conservative, the long-time joint probability of p and 
q can be written as a product over the independent edge probabilities Pind. Any vector q that 
does not satisfy the conservation law, of course, has vanishing probability in the long-time 
limit. To write this claim in large deviation form we first rewrite Pind in large deviation form, 
Pind( p(y), q(y, z)) � e−TIind( p(y),q(y,z)), with the rate function

Iind( p(y), q(y, z)) = p(y)r(y, z)− q(y, z) + q(y, z) ln
q(y, z)

p(y)r(y, z)
. (17)

The joint density and flow fluctuations are then given by

I( p, q) =

{∑
y<z Iind( p(y), q(y, z)), q satisfies equation (16)

∞, otherwise.
 (18)

This form of I( p, q) reveals why Pind is not the marginal distribution for single-edge flow 
statistics. The conservation law constraint complicates any attempts to simply express the 
marginal P( p( y ), q(y, z)) by integrating out the other densities and flows.

Our heuristic arguments for the form of I( p, q) are suggestive, but they do not constitute 
a proof so much as a motivation. Equation (18), known in mathematics literature as the Level 
2.5 large deviation function, can be proven using more sophisticated arguments that construct 
an effective process to generate rare densities and flows [21, 23]. While that construction 
offers rigor and alternative insight, we find our simple, heuristic derivation to be instructive 
since it clearly identifies the essential physics: we may discard temporal correlations in a com-
plicated Markov jump process to obtain an asymptotically equivalent collection of Poisson 
point processes.

3.2. Currents

Suppose now that we are interested in the empirical currents rather than the flows. Unlike  
q( y, z), j( y, z) deducts the rate of reversed hops from z to y. The probability of measuring 
a current j( y, z) is thus given by marginalizing over q( y, z) and q(z, y) with the constraint  
j( y, z)  =  q( y, z)  −  q(z, y). As with the flows, currents across different edges are coupled by 
probability conservation:

∑
z

j(y, z) = 0 ∀y. (19)

For large T, this marginalization of flows proceeds via a saddle point approximation [36] to 
yield P( p, j) � e−TI( p, j) with

I( p, j) =

{∑
y<z Ψ( p(y), p(z), j(y, z)), j satisfies equation (19)

∞, otherwise.
 (20)

The function Ψ follows from treating each edge independently. For example, integrating out 
q(y, z) and q(z, y) yields

Ψ(p(y), p(z), j(y, z))

= inf
q(y,z)

I
(

p(y), q(y, z)
)
+ I

(
p(z), q(y, z)− j(y, z)

)
. (21)

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004
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The minimizer q�(y, z) is the root of a quadratic,

q�(y, z) =
1
2

(
j(y, z) +

√
j(y, z)2 + a p(y, z)2

)
, (22)

where a p(y, z) ≡ 2
√

p(y) p(z)r(y, z)r(z, y). Thus Ψ may be expressed in terms of q� as

Ψ(p(y), p(z), j(y, z))

= I
(

p(y), q�(y, z)
)
+ I

(
p(z), q�(z, y)

)

=

[
p(y)r(y, z) + p(z)r(z, y)− q�(y, z)− q�(z, y)

+ q�(y, z) ln
q�(y, z)

p(y)r(y, z)
+ q�(z, y) ln

q�(z, y)
p(z)r(z, y)

]
.

 

(23)

In appendix A we carry out straightforward algebraic manipulations to bring Ψ into the form 
of Bertini et al [23],

Ψ =
√

j p(y, z)2 + a p(y, z)2 −
√

j(y, z)2 + a p(y, z)2 + j(y, z)
(

arcsinh
j(y, z)

a p(y, z)
− arcsinh

j p(y, z)
a p(y, z)

)
.

 

(24)

4. Rate function bound

To relate the fluctuations described by the rate function I( p, j) to the thermodynamic dissipa-
tion, it is useful to write I in terms of the currents and thermodynamic forces F p. For notational 
compactness we suppress the labels of the vertices. We note that j p/ sinh(F p/2) = a p � 0, 
implying that jp has the same sign as Fp. Furthermore, it is natural to measure the empirical 
current j relative to the current jp, so we introduce ̄ ≡ j/j p. With this new notation,

Ψ = j p
[
coth

F p

2
− ̄F p

2
+ ̄arcsinh

(
̄ sinh

F p

2

)
−
√

̄2 + csch2 F p

2

]
.

 

(25)

Taylor expanding in powers of Fp, we obtain

Ψ = j p
[
(̄− 1)2F p

4
− (̄2 − 1)2(F p)3

192
+

(̄2 − 1)2(3̄2 + 1)(F p)5

7680
+O((F p)7)

]
.

 
(26)

The low-order partial sums of this series alternate, first overestimating, then underestimating 
Ψ (see figure 3). In particular, the first partial sum bounds the rate function by a quadratic [26],

Ψ � Ψquad ≡ (̄− 1)2σ p

4
, (27)

where σ p = j pF p is the local dissipation for the edge.
Truncation of a Taylor series, of course, does not necessarily yield a bound. To prove 

inequality (27) we must confirm the positivity of the residual ∆ ≡ Ψquad −Ψ. Since ∆ is sym-
metric about ̄ = 0, it suffices to consider positive ̄ . We note that ∆ vanishes when ̄ = 1, and

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004



10

∂∆

∂̄
= j p

[
arcsinh

(
̄ sinh

F p

2

)
− ̄F p

2

]
, (28)

implying that ∆ strictly increases as |̄− 1| grows7. Since Ψ � Ψquad is bounded for every 
edge of the graph, I( p, j) is bounded by a quadratic form whose curvature is determined by 
the local dissipation rates:

I( p, j) � Iquad( p, j) ≡
∑
y<z

σ p(y, z)
4j p(y, z)2 ( j(y, z)− j p(y, z))2 , (29)

Equation (29) is restricted to conservative currents, or alternatively we take Iquad ≡ ∞ for 
nonconservative j.

Recall that by construction I(π, jπ) = 0. Our quadratic bound shares this minimum. 
Furthermore, I(π,−jπ) = Iquad(π,−jπ), so Iquad is the tightest quadratic upper bound which 
has a minimum at (π, jπ) and can be expressed as a single sum over edges (i.e. is diagonal in 
the edge basis) [27]. The curvature of I, evaluated at π and jπ, reflects the variance of long-
time current fluctuations. The tighter inequality (29) is, the more precisely we may relate this 
variance to the local dissipation rates. Truncation after the first-order term of the series expan-
sion equation (26) becomes exact for small thermodynamic forces, meaning that the quadratic 
bound is accurate when Fp is small.

5. Scalar current fluctuations

The large deviation function I(p, j) describes the joint distribution for the density in all meso-
states and currents between these states. Experiments, however, cannot hope to resolve the 
statistical details of a large number of degrees of freedom. To make practical use of inequality 

Figure 3. Residuals from approximating Ψ by the partial sums of the Taylor series 
expansion in Fp, equation  (26), plotted for Fp  =  0.75. The label i indicates that the 
partial sum is computed up through (and including) the (F p)i term in the series. The 
residual is this ith  partial sum minus Ψ. When ̄  is in the neighborhood of  ±1, the Taylor 
expansion for Ψ is an alternating series, so the partial sums provide upper and lower 
bounds on Ψ. For low-order partial sums and for small Fp the partial sums provide 
bounds for all values of ̄ . As an example, the i  =  1 partial sum is the quadratic bound 
given by equation (27), which holds for all values of ̄  and Fp.

7 Using the monotonicity of arcsinh and the concavity of sinh, equation (28) implies that ∂∆/∂̄ > 0 for ̄ > 1 and 
∂∆/∂̄ < 0 for 0 � ̄ � 1.
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(29), we must project the result onto a smaller probability space. Rather than monitoring p 
and j, suppose we only measure a scalar current of the form

jd = j · d ≡
∑
y<z

j(y, z)d(y, z). (30)

The generalized current jd is a linear combination of the currents between mesostates with 
expansion coefficients d  [24]. This construction affords significant flexibility. By choosing 
d = Fπ, the generalized current is the same as the dissipation rate. Other choices of d  can 
highlight the current across a single edge or the current associated with transitions between 
macrostates, as illustrated in section 7.

In the long-time limit, the distribution for this generalized current adopts the large devia-
tion form P( jd) � e−TI( jd). Because P( jd) can be constructed from P( p, j), the rate function 
for the generalized current is related to I( p, j)8:

I( jd) = inf
p, j| j·d=jd

I( p, j). (31)

This infimum is bounded from above by I(p∗, j∗) for any choice of p∗ and conservative j∗ 
such that j∗ · d = jd. We choose p∗ = π and j∗ = ( jd/jπd ) jπ, where jπd ≡ jπ · d . As a mul-
tiple of the conservative steady-state current jπ, j∗ is guaranteed to be conservative. Hence

I( jd) � I( p∗, j∗)

=
1
4

(
jd
jπd

− 1
)2 ∑

y<z

σπ(y, z)

=
( jd − jπd )

2Σπ

4( jπd )2 ,

 (32)

where we have used inequality (29). The bound on the large deviation function translates to a 
bound on the variance of jd since var( jd) = 1/I′′( jπd ), so measuring the mean and variance of 
any scalar current provides a lower bound on the dissipation rate:

2( jπd )
2

var( jd)
� Σπ . (33)

The bound on Σπ is most useful if it is tight, but there are two distinct reasons it might be 
loose: (1) Ψ for the edges could deviate significantly from the quadratic bound Ψquad or (2) 
our choice of p∗ and j∗ could be suboptimal. In the remainder of the paper we study diffusion 
processes as a limit of Markov jump processes. That limiting procedure yields Ψ = Ψquad, 
implying that the diffusion process bound is weakened only by our suboptimal p∗ and j∗. 
For diffusions, the high-dimensional rate function I( p, j) is exactly given by the quadratic 
Iquad( p, j), but the low-dimensional rate function I( jd) can still differ significantly from the 
upper bound in inequality (32). Section 7 considers this scenario in greater detail.

6. Diffusion processes

Though our results have been derived for Markov jump processes, we may translate them 
into appropriate forms to describe fluctuations in diffusion processes. For simplicity, we con-
sider this diffusive limit only for a single particle moving in two dimensions with mobility 
μ. Let x ≡ (x1, x2) denote the particle’s position, which evolves according to an overdamped 

8 The restriction to conservative currents is built into I because I( p, j) = ∞ for non-conservative j
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Langevin equation with deterministic force f(x) ≡ ( f1(x), f2(x)) and random force η. We fur-
ther decompose the deterministic force into a contribution from a free energy gradient ∇U(x) 
and one from a non-gradient external field f ext(x),

∂x
∂t

= −µ∇U(x) + µf ext(x) + η. (34)

The random force at time t, η(t) ≡ (η1(t), η2(t)) is a vector of Gaussian random variables 
satisfying 〈ηk(t)〉 = 0 and 〈ηk(t)ηk′(t′)〉 = 2Dδk,k′δ(t − t′), where D is the diffusion constant. 
In section 7 we will consider the particular driven diffusive process shown in figure 4 as an 
illustrative example.

Associated to the Langevin equation is a Fokker–Planck equation describing the evolution 
of probability density at position x, ρ(x):

∂ρ(x)
∂t

= −∇ ·J ρ(x), (35)

where

J ρ(x) ≡ (J ρ
1 (x),J

ρ
2 (x)) = f(x)ρ(x)− D∇ρ(x) (36)

is the ρ-dependent current at x. We denote the steady-state density ρπ and the steady-state 
current J π. As in the jump process, we define an empirical density field and empirical current 
field, ρ and J  respectively, and measure the probability of fluctuations away from ρπ and J π 
using the rate function I[ρ,J ]. The square brackets highlight that I  is now a functional of 
the density and current fields. The exact form of I  is known [27, 38]. In this section, we give 
a complementary derivation of the result using a limit of the Markov jump process results. 
The limiting procedure serves to clarify the origin of quadratic current fluctuations in diffu-
sion processes.

Figure 4. Contour plot of a free energy U(x) = −B
∑4

i=1 e−(x−ci)
2
, with the ci’s 

setting the center of the Gaussian wells at (±1, ±1). The parameter B controls the 
barrier heights (or equivalently the well depths). The black arrows represent a vector 
field of the non-gradient external field, f ext(x) = Ax2e−3|x|(x2,−x1), which drives 
cycles around the origin. The external field’s amplitude is regulated by the parameter A.
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To leverage our previous results, we approximate the diffusion process by a jump process 
on a square lattice, as depicted in figure 5. There is no unique way to coarse-grain a diffusion 
to a jump process [39]. Thus we have freedom in how we construct our model so long as it 
yields a diffusive limit that matches the Fokker–Planck equation, equation  (35), when the 
lattice spacing becomes infinitesimal. We construct a simple nearest-neighbor jump process 
which is entirely characterized by four space-dependent transition rates for hopping from a 
grid point at x to a nearest-neighbor site: Wup(x), Wright(x), Wdown(x), and Wleft(x). These rates 
must scale with the lattice spacing h in such a way that the first two jump moments give the 
correct drift and diffusion [39], requiring

h(Wright(x)− Wleft(x)) = µf1(x)
h(Wup(x)− Wdown(x)) = µf2(x)

h2(Wright(x) + Wleft(x)) = 2D

h2(Wup(x) + Wdown(x)) = 2D,

 (37)

as h → 0. From these constraints the hopping rates are

Wright(x) =
µf1(x)

2h
+

D
h2

Wleft(x) =
−µf1(x)

2h
+

D
h2

Wup(x) =
µf2(x)

2h
+

D
h2

Wdown(x) =
−µf2(x)

2h
+

D
h2 .

 (38)

We now identify each vertex of the graph by its location x, writing the density at that 
vertex as p(x). The edge connecting grid point x to its neighbor on the right has cur-

rent j p
right(x) ≡ j p(x, x + (h, 0)), and the thermodynamic force associated to that edge is 

Figure 5. A jump process approximates the diffusion in figure 4. On the left, a close-
up view of a sub-system shows the transition rates on the lattice. On the right, the 
steady-state behavior of the full state space (x ∈ [−2, 2]× [−2, 2]) is shown for 
A = 8, B = 5, D = 1,µ = 1. The steady-state density primarily resides in the four 
wells, but the external field drives some clockwise current around the origin.

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004



14

F p
right(x) ≡ F p(x, x + (h, 0)). The ‘up’, ‘down’, and ‘left’ directions are treated analogously. 

Using this notation, we may rewrite Iquad of equation (29) as

Iquad(p, j) =
1
8

∑
x

[
F p

left(x)
j p
left(x)

( jleft(x)− j p
left(x))

2 +
F p

right(x)
j p
right(x)

( jright(x)− j p
right(x))

2

+
F p

down(x)
j p
down(x)

( jdown(x)− j p
down(x))

2 +
F p

up(x)
j p
up(x)

( jup(x)− j p
up(x))

2
]

.

 

(39)

To simplify the expression further, we must convert from the discrete-space density p and 
current j to the fields ρ and J . In the continuum limit, p(x) vanishes while ρ(x) remains finite 
such that p(x) → h2ρ(x). The current field J ρ is also finite, but the current on any edge of the 
lattice vanishes with order h:

j p
right(x) = p(x)Wright(x)− p

(
x + (h, 0)

)
Wleft

(
x + (h, 0)

)

=

(
µf1(x)ρ(x)− D

∂ρ(x)
∂x1

)
h +O(h2)

= J ρ
1 (x)h +O(h2).

 

(40)

Likewise, the thermodynamic force on each edge vanishes in proportion to h:

F p
right(x) = ln

p(x)Wright(x)

p
(

x + (h, 0)
)

Wleft

(
x + (h, 0)

)

=

(
µf1(x)

D
− 1

p(x)
∂p(x)
∂x1

)
h +O(h2)

= Fρ
1 (x)h +O(h2),

 

(41)

with a finite thermodynamic force field given by

Fρ(x) ≡ (Fρ
1 (x),F

ρ
2 (x)) =

µf(x)
D

−∇ ln ρ(x). (42)

Hence the ratio of force to current on an edge, which appears in each term of equation (39), 
remains finite and independent of the jump direction,

lim
h→0

F p
right(x)

j p
right(x)

=
Fρ

1 (x)
J ρ

1 (x)
=

µf1
D − ∂

∂x1
ln ρ(x)

µf1ρ− D ∂
∂x1

ρ(x)
=

1
Dρ(x)

. (43)

Recall from equation (26) that the rate function bound (29) becomes tighter for small ther-
modynamic forces. Since the forces vanish in the h → 0 limit, the jump process on an infini-
tesimal grid thus saturates inequality (29), yielding the equality

I[ρ,J ] = lim
h→0

I( p, j) = lim
h→0

Iquad( p, j). (44)

In other words, approximating I by Iquad becomes exact in the continuum limit. We convert the 
sum to an integral using

∑
x

h2 →
∫

dx (45)
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and insert equations (40) and (43) into (39) to obtain the rate function for diffusions

I[ρ,J ] =

∫
dx

(J (x)−J ρ(x))2

4Dρ(x)
. (46)

Note that the current fluctuations are strictly quadratic, a fact that can be traced back to the 
vanishingly small thermodynamic force on each infinitesimal edge of the graph.

The rate function may alternatively be expressed with respect to the local dissipation rates,

σρ(x) = J ρ(x) ·Fρ(x) =
J ρ(x)2

Dρ(x)
. (47)

Interpreting σρ as a physical dissipation requires that the particle exchanges energy with a 
thermal reservoir at inverse temperature β and satisfies the Einstein relation βD = µ. The 
second equality follows from a rearrangement of equation (43),

J ρ(x) = DFρ(x)ρ(x), (48)

which is an expression of linear response; the current at any point in space is linearly pro-
portional to the thermodynamic force at that point. This linear-response feature of diffusion 
processes implies that the current fluctuations are specified by local dissipation rates:

I[ρ,J ] =

∫
dx

σρ(x)
4J ρ(x)2 (J (x)−J ρ(x))2 . (49)

Our form for I  is analogous to the right-hand side of inequality (29), but for diffusion pro-
cesses the inequality has become an equality.

7. Coarse-graining in space

Up to this point we have assumed a mesoscopic Markov process that is monitored with com-
plete precision. More commonly, it is only possible to observe coarse-grained macrostates, 
and transitions between them might not be Markovian. Rather, the macroscopic dynamics is 
described by a hidden Markov model [40]. Remarkably, current fluctuations in the non-Mar-
kovian macroscopic dynamics carry information about the dissipation rate of the underlying 
mesoscopic degrees of freedom.

To illustrate the connection between dissipation and a macroscopic current, we study the 
generalized scalar current jd, defined in equation (30). The vector d  determines which micro-
scopic transitions are observable, so for a suitable choice of d , jd can be any macroscopic 
current. Consider, for example, the two-dimensional driven diffusion process in figure 4. A 
particle evolves on a free energy landscape

U(x) = −B
4∑

i=1

e−(x−ci)
2

 (50)

with B controlling the depth of four Gaussian wells centered at c = (±1,±1). At a coarse-
grained level, these wells define four possible macrostates, the quadrants of the coordinate 
plane. In addition to the free energy landscape, we introduce a non-gradient external field with 
amplitude A,

f ext(x) = Ax2e−3|x|(x2,−x1), (51)
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which drives transitions between the macrostates. By using equation  (38) to discretize the 
state space, we can numerically solve for the steady state, as plotted in figure 6. We focus 
on the macroscopic current given by the rate of clockwise (CW) transitions between these 

Figure 6. Steady-state density field, current field, and local dissipation rate (top to 
bottom) for the example from figure 4 with A = 8, B = 5, D = 1,µ = 1. The diffusion 
process was approximated by a jump process on a 400 × 400 grid, and the master 
equation was numerically solved in discrete space. Note that the local dissipation rate is 
largest at the barriers, where the density is low and the current high.
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coarse-grained states less the rate of counter-clockwise (CCW) transitions. As illustrated in 
figure 7, we measure this current, jd = j · d , by choosing

Figure 7. Left: The driven diffusion process in figure  4 is naturally coarse-grained 
into four states, and the macroscopic current is constructed by monitoring transitions 
between them. Clockwise transitions (black arrows) are given the weight  +1 while 
counterclockwise transitions (gray arrows) carry weight  −1. All motion within a 
coarse-grained macrostate is undetected. Right: In practice, we compute large deviation 
properties of the coarse-grained current by solving the diffusion process on a grid, as 
in section 6. On the grid, jd is constructed by weighting the black edges by  ±1 and all 
other edges by 0 as specified in equation (52).

Figure 8. Large deviation function for the macroscopic current with the four coarse-
grained states in figure 7. U and f ext are given by equations (50) and (51), respectively, 
with A  =  8, B  =  5. Macroscopic currents are expressed in relation to the steady-state 
value: ̄d ≡ jd/jπd . The blue line shows the current fluctuations for the diffusion process 
solved on a grid of 400 × 400 states. I(jd) is the numerical Legendre transform of a 
scaled cumulant generating function, computed as the maximum eigenvalue of a 
tilted rate matrix [36, 41, 42]. The dotted black line is the result of the constrained 
minimization of the quadratic form, computed as described in appendix B. This 
constrained minimization very closely approximates I(̄d) for small deviations. The 
dashed black line is the quadratic rate function bound equation  (32) with curvature 
regulated by the total dissipation rate.
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d(y, z) =




1, y → z is a CW macrostate transition
−1, y → z is a CCW macrostate transition
0, otherwise.

 (52)

The results from section 5 directly apply to this construction. In particular, inequality (33) 
implies Σπ � 2( jπd )

2/var( jd). The right-hand side of this inequality depends on the first two 
moments of the macroscopic empirical current distribution. By measuring these moments 
with coarse-grained observations, we therefore bound the total entropy production of the 
mesoscopic system, Σπ.

To assess the inequality’s tightness, we used a 400 × 400 grid to numerically compute I(jd) 
for the four-well model with D = µ = 1, and with various choices of A and B. We saw in sec-
tion 6 that Iquad becomes exact in the diffusive limit, so

I( jd) = inf
p, j| j·d=jd

Iquad(p, j) � inf
j| j·d=jd

Iquad(π, j). (53)

The numerical results, plotted in figure  8, reflect that inequality (53) is a tight bound. In 
contrast, the dissipation rate bound, inequality (32), is noticeably weaker. A measure of this 
weakness is the ratio

φ =

(
2( jπd )

2

var( jd)

)
/Σπ , (54)

which ranges from 0 to 1. This ratio, plotted in figure 9 for a range of driving amplitudes and 
well depths, assesses the fraction of the dissipation rate that can be inferred from the macro-
scopic current fluctuations.

It has been shown that our inference strategy detects the greatest fraction of dissipation if 
the macroscopic current is constructed to be proportional to the thermodynamic force [26]. 
More precisely, φ = 1 when d ∝ Fπ, and φ decreases when the vector d  is less aligned 
with Fπ. In our coarse-graining example, the elements of d  are set to 0 or  ±1 based on 

Figure 9. Fraction of the total dissipation rate which can be deduced from the 
macroscopic current fluctuations in the four-well diffusion model defined by 
equations (50) and (51). A controls the amplitude of the external driving field and B 
controls the well depths. Equation  (54) defines φ, which takes the value 1 when the 
current fluctuations account for all of the dissipation. Values of φ were computed by 
representing the diffusion process as a jump process on a 400 × 400 grid. For large B, 
the wells become deep metastable states which are amenable to coarse-graining, so the 
macroscopic current accounts for a significant fraction of the dissipation.
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whether each mesoscopic transition is observable. With d  constrained by which transitions 
are observable, φ can only be varied if Fπ is altered, something that can be achieved by tun-
ing A and B.

We can understand φ’s dependence on these model parameters by analyzing the degree 
to which Fπ  aligns with d . Figure 10 illustrates how the continuous thermodynamic force 
field Fπ(x) varies with the well depth. In the absence of wells (B  =  0), the thermodynamic 
force is radially symmetric about the origin. As the wells are made deeper, Fπ is ampli-
fied along the axes, more closely resembling d  of figure  7. This resemblance explains 
the trend that φ increases with increasing B. Interestingly, φ depends only weakly on the 
external field amplitude, a fact we rationalize with a linear-response argument at the end 
of appendix B.

8. Conclusions

It is typically impossible to resolve detailed mesoscopic dynamics, even with the most 
sophisticated experimental tools. Because the dissipation rate is defined in terms of such 
immeasurable mesoscopic transitions, it may seem that there is no hope of experimentally 
measuring the dissipation, short of explicitly detecting the free energetic flows from the 
thermodynamic reservoirs. Our models and analysis demonstrate that, in fact, a bound on the 
total dissipation can be inferred by monitoring only the fluctuations in macroscopic currents. 
The procedure we use to infer this bound is extremely adaptable; we make essentially no 
assumptions about the mesoscopic details of the system nor about the macroscopic currents 
that will be observed.

Crucially, it is the macroscopic current fluctuations, not their averages, that reveal the dis-
sipation of the unobserved mesoscopic dynamics. Motivated by the inability to fully resolve 
mesoscopic dynamics in an experiment, we have constructed a coarse-grained macroscopic 
current by recording a small subset of the mesoscopic transitions. The fraction of total dissipa-
tion due to the irreversibiilty of one of these observed transitions is small and in fact vanishes 
in the diffusive limit. Were we to measure only the average current through the observed links, 

Figure 10. Thermodynamic force for the four-well model with A  =  8, solved on 
a 400 × 400 grid. For large B, the free energy landscape has deep wells, and the 
thermodynamic forces are large along the barriers separating the wells. In this large-B 
limit, the thermodynamic force resembles d , which vanishes everywhere except for 
along the axes.
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we would at best deduce this infinitesimally small portion of the total dissipation. However, if 
we use the fluctuation-dissipation relation for the observed currents, we tacitly constrain the 
average behavior of all the unobserved transitions. Hence the fluctuations in a tiny subset of 
the mesoscopic transitions carry information about an appreciable fraction of the total dissipa-
tion. This useful fact stems from a fundamental bound on the extent of fluctuations: the total 
dissipation rate sets a bound for the variance in any generalized current.

We anticipate that our inference scheme will be a robust strategy for analyzing dissipation 
in stochastic, biophysical systems. The extent to which coarse-grained fluctuations reveal the 
total dissipation, measured by φ, depends on the fidelity of the coarse-graining. For the model 
we studied in section 7, φ nears 1 when the wells are sufficiently deep that the coarse-grained 
states are long-lived metastable macrostates. The step-like dynamics of dissipative biological 
machines [43, 44] demonstrate precisely this type of metastability and time-scale separation 
[45]. Indeed, it is often the goal of biological studies to assign the experimentally observed 
metastable macrostates to coarse-grained descriptions, e.g. ligation states. Together, these 
observations bolster the prospect of accurately inferring dissipation rates using data from 
single molecule experiments.
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Appendix A. Derivation of equivalent forms of Ψ

In the main text we have extensively discussed the time-asymmetric empirical current from 
state y to z, j(y,z). This quantity is time-asymmetric because it acquires a negative sign if the 
trajectory is run backwards in time. Maes and coworkers have highlighted the importance of 
the time-symmetric empirical traffic, which counts the total number of hops across the yz edge 
in either direction [12, 21, 46–48]. As in our study of the currents, we monitor two different 
forms of the traffic: the expected traffic given p, tp(y, z)  =  p( y )r(y, z)  +  p(z)r(z, y), and the 
traffic t�(y, z) = q�(y, z) + q�(z, y). Ψ naturally decomposes into contributions from the traffic 
and contributions from the currents, Ψ = Ψtraffic +Ψcurrent [21], with

Ψtraffic ≡ p(y)r(y, z) + p(z)r(z, y)− q�(y, z)− q�(z, y)

and

Ψcurrent ≡ q�(y, z) ln
q�(y, z)

p(y)r(y, z)
+ q�(z, y) ln

q�(z, y)
p(z)r(z, y)

. (A.1)

Ψtraffic is simply the difference between the expected and the observed number of hops, 
Ψtraffic = t p(y, z)− t�(y, z). To bring Ψtraffic into the form that appears in equation (24), we 
recognize that t�(y, z) =

√
j(y, z)2 + a p(y, z)2  and that t p(y, z) =

√
j p(y, z)2 + a p(y, z)2. 

Simplifying Ψcurrent is slightly more involved. Using the solution for q�, equation (22), Ψcurrent 
can be rewritten in the form of equation (24),
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Ψcurrent =
j(y, z)

2
ln

q�(y, z)p(z)r(z, y)
q�(z, y)p(y)r(y, z)

+

√
j(y, z)2 + a p(y, z)2

2
ln

q�(y, z)q�(z, y)
p(y)r(y, z)p(z)r(z, y)︸ ︷︷ ︸

0

=
j(y, z)

2

(
ln

q�(y, z)
q�(z, y)

+ ln
p(z)r(z, y)
p(y)r(y, z)

)
=

j(y, z)
2

ln
j(y, z) +

√
j(y, z)2 + a p(y, z)2

−j(y, z) +
√

j(y, z)2 + a p(y, z)2

+
j(y, z)

2
ln

j p(y, z) +
√

j p(y, z)2 + a p(y, z)2

−j p(y, z) +
√

j p(y, z)2 + a p(y, z)2
= j(y, z)

(
arcsinh

j(y, z)
a p(y, z)

− arcsinh
j p(y, z)
a p(y, z)

)
.

 

(A.2)

Appendix B. Tight quadratic current fluctuation bound

In the main text, an upper bound for I(jd) was obtained by evaluating I at p∗ = π and 
j∗ = ( jd/jπd ) jπ. This choice implies that the chance of measuring a value jd is at least as likely 
as it would be if we simultaneously scaled all of the steady-state mesoscopic currents so as to 
make j∗ · d = jd. There can, however, be more likely ways to obtain jd which do not equally 
scale the different mesoscopic currents. Identifying the optimum is a straightforward exercise 
in linear algebra: the quadratic form Iquad must be extremized subject to the linear constraint 
j · d = jd and to current conservation. The restriction to conservative currents may be imposed 
by a collection of Lagrange multipliers, one per node, as in [26] or by expressing the currents 
in a cycle basis as in [27, 49]. We use the second strategy here. Since both strategies exactly 
solve the same convex optimization problem, they must yield the same solution.

Let a(i) be the current around the ith  cycle in a complete cycle basis. This basis may be 
constructed from spanning trees [50], but for now the particular cycle basis is immaterial. We 
introduce

χi
yz =




1, cycle i contains edge yz with y < z
−1, cycle i contains edge yz with z < y
0, otherwise

 (B.1)

to convert between the edge basis and the cycle basis so that

j(y, z) =
∑

i

χi
yza(i). (B.2)

Recall that

Iquad(p, j) =



∑
y<z

σ p(y,z)
4

(
j(y,z)

j p(y,z) − 1
)2

, conservative j

∞, otherwise.
 (B.3)

In terms of the cycle basis the restriction to conservative currents is more natural:

Iquad( p, a) =
∑
y<z

(∑
i

χi
yz(a(i)− a p(i))

)2
F p(y, z)
4j p(y, z)

=
1
2

∑
i,k

(a(i)− a p(i))Gik(a(k)− a p(k)),

 

(B.4)

T R Gingrich et alJ. Phys. A: Math. Theor. 50 (2017) 184004



22

with Gik =
∑

y<z χ
i
yzχ

k
yz

F p(y,z)
2j p(y,z) [27]. We also translate the linear constraint into the cycle basis:

jd =
∑
y<z

∑
i

χi
yza(i)d(y, z) =

∑
i

a(i)d(i) ≡ a · d, (B.5)

where we have defined d(i) ≡
∑

y<z χ
i
yzd(y, z). In words, d(i) is now the expansion coefficient 

that indicates how much cycle i contributes to the generalized current jd.
In analogy with the main text, I( jd) � Iquad(p∗, a∗) for any choice of p∗ and a∗ which 

satisfy the constraint a · d = jd . We again choose p∗ = π, but now we compute the exact 
minimizer of the quadratic form Iquad:

a∗ = aπ +

(
jd − jπd

dTG−1d

)
G−1d. (B.6)

Hence,

I( jd) � inf
j|j·d=jd

Iquad(π, j) =
( jd − jπd )

2

2 dTG−1d
. (B.7)

For the coarse-graining problem of section  7, this denominator is simple if we use the 
cycle basis consisting of the square lattice’s plaquettes. Each plaquettes is one of the squares 
of side length h. Notice that for our coarse-graining procedure, d(i)  =  0 for all but one of the 
plaquettes. Only the central plaquette that encircles the origin has a nonzero d. Since we can 
order the plaquettes arbitrarily, we designate the central plaquette by the label ‘o’ to highlight 
that it is the plaquette at the origin. Because d(o) = 4, dTG−1d = 16G−1

oo  with G−1
oo  denoting 

the diagonal matrix element of G−1 for the plaquette at the origin.
Finally, we can see why φ is nearly independent of the driving field amplitude A in figure 9. 

In terms of the G matrix,

φ =

(
2( jπd )

2

var( jd)

)
/Σπ =

( jπd )
2

8G−1
oo Σπ

. (B.8)

For sufficiently small driving amplitude, we anticipate that the mesoscopic currents will 
respond linearly to the external force: jπ ∝ A. In this linear regime we also have Fπ ∝ A, 
so Σπ ∝ A2. Furthermore, since matrix elements of G involve ratios of Fp and j, the linear-
response value of G−1

oo  is independent of A. Combining these effects, we see that φ does not 
vary with A in the linear-response regime. Empirically, we observe in figure 9 that insensitivity 
to A in fact extends far beyond the linear-response regime.
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