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Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare
dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however,
requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently
modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging
in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we
examine schemes for addressing this problem, which engineer correlation between a trial trajectory
and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern
perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical me-
chanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in
this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of
random numbers that advance its stochastic time evolution, as done in a handful of existing methods.
In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics
of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very
long trajectories. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922343]

I. INTRODUCTION

Recent advances in non-equilibrium statistical mechanics
have given fresh perspectives on computational procedures
applied to fluctuating molecular systems. The Jarzynski work
relation and the Crooks fluctuation theorem, for instance,
provide routes to compute equilibrium quantities from non-
equilibrium measurements.1–6 Here, we demonstrate that tradi-
tional Metropolis-Hastings Markov Chain Monte Carlo
(MCMC) can be similarly viewed as a procedure to extract
equilibrium sampling from generically non-equilibrium pro-
cesses. Monte Carlo (MC) trial moves drive a system away
from the steady state distribution, and an entropy produc-
tion can be assigned to these driven transformations. This
interpretation provides an elegant way to understand chal-
lenges encountered in MCMC sampling, one that is especially
revealing for MCMC sampling of trajectories. Path sampling
methods suffer routinely from profound inefficiency when
trajectories of interest become long. From a non-equilibrium
perspective on MCMC, we provide simple and quantitative
ways to understand the inefficiency.

Importance sampling of trajectories has enabled studies of
a myriad of dynamical processes in physics and chemistry.7–12

In particular, reaction rates and mechanisms can be found
by transition path sampling (TPS), which examines the
subensemble of trajectories that complete a reaction.13 The
practicality of TPS depends intimately on the design of the
MC move set. Namely, the moves must generate correlated
trajectories so that a trial trajectory is likely to exhibit similar
dynamical behavior as the previously sampled trajectory.
Chaotic divergence and microscopic reversibility of equilib-
rium dynamics inform the construction of two such moves, the
so-called “shooting” and “shifting” moves.13 These methods

generate correlated trajectories by propagating alternative
histories from highly correlated initial configurations. For
sufficiently short trajectories, the imposed correlation at one
time serves to strongly correlate the trajectories at all times.
Long trajectories, however, are problematic: trial trajectories
either lose all useful correlation with the reference path, or
else they coincide so closely with the reference that changes
are impractically small.14 In both cases the efficiencies of
shooting and shifting moves plummet as trajectories grow
longer. Sampling trajectories that involve slow molecular
rearrangements and diffusive processes stand to benefit
significantly from alternative methods of generating correlated
trajectories.

We consider three different ways to guide long trajec-
tories: introducing auxiliary forces; selecting among a series
of short trial segments, as in Steered Transition Path Sampling
(STePS);15 and advancing stochastic integrators with corre-
lated random numbers (which we refer to as “noise guid-
ance”).16,17 Of the three, only noise guidance yields a MC
entropy production which is subextensive in the trajectory
length. The other schemes, which accumulate extensive en-
tropy production, cannot efficiently extend to sampling of long
trajectories. Strong noise guidance is not, however, a panacea;
correlated noises need not imply correlated trajectories. We
illustrate this point by considering Glauber dynamics of a two-
dimensional Ising model and Langevin dynamics of a two-
dimensional Weeks-Chandler-Andersen (WCA) fluid. Only
when microscopic degrees of freedom have a small number of
discrete possibilities, as in the lattice dynamics, it is possible
to generate correlated long time scale trajectories by tuning the
noise.

The structure of the paper is as follows. First, we introduce
and discuss the perspective of MC moves as non-equilibrium

0021-9606/2015/142(23)/234104/12/$30.00 142, 234104-1 © 2015 AIP Publishing LLC

 22 Septem
ber 2024 03:10:13

http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://dx.doi.org/10.1063/1.4922343
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4922343&domain=pdf&date_stamp=2015-06-16


234104-2 T. R. Gingrich and P. L. Geissler J. Chem. Phys. 142, 234104 (2015)

processes which produce entropy, detailing the consequences
of constraints analogous to fluctuation theorems and the sec-
ond law of thermodynamics. Next, we review transition path
sampling in stochastic dynamics and demonstrate the chal-
lenge posed by long trajectories in the context of trajec-
tory sampling of a one-dimensional random walker. We then
analyze alternative strategies to correlate long trajectories
of a one-dimensional single particle system and of a two-
dimensional Ising model. Finally, we explore how strongly
noise guidance correlates trajectories in example systems, and
then conclude.

II. MARKOV CHAIN MONTE CARLO ENTROPY
PRODUCTION

We start by discussing a very general perspective on tradi-
tional Metropolis-Hastings MCMC sampling.18,19 Consider
the problem of sampling a configuration, x, according to proba-
bility distribution P(x). For example, x could be a vector of the
coordinates and momenta of N hard spheres, the state of spins
in an Ising model, or all coordinates of a classical trajectory.
The Metropolis-Hastings algorithm generates a Markov chain,
which can be thought of as a dynamics through configuration
space with the steady-state distribution P(x). This dynamics
obeys detailed balance but is not necessarily physical.

One typically splits each Monte Carlo move into two steps.
First, a change from x to a new state x̃ is proposed according
to a generation probability, Pgen[x → x̃]. Throughout this paper
we will refer to x as a reference and x̃ as the trial. This trial is
conditionally accepted with probability

Paccept[x → x̃] = min
�
1,e−ω

�
, (1)

where

ω = ln
P(x)Pgen[x → x̃]
P(x̃)Pgen[x̃ → x] . (2)

Together, these two steps ensure detailed balance, guaranteeing
that the equilibrium distribution P(x) is stationary under the
MC protocol. Lacking the conditional acceptance step, such
a MC procedure would generally drive a system away from
its equilibrium distribution. We find it instructive to view this
notional process as a genuine non-equilibrium transformation,
one that would generate nonzero entropy in most cases. In the
formalism of stochastic thermodynamics, the resulting entropy
production corresponds precisely to the quantity ω defined in
Eq. (2).20

The MC acceptance step effectively filters realizations of
this non-equilibrium process, with a bias towards low values
of ω. By construction, the bias exactly negates the tendency
of trial move generation to drive a system out of equilibrium.
From this perspective, the countervailing tendencies of pro-
posal and acceptance are akin to the operation of a Maxwellian
demon, which by contrast filter realizations of equilibrium
dynamics with a bias that creates a non-equilibrium state.

Viewing the procedure in the language of entropy pro-
duction distributions reveals an important asymmetry of P(ω).
Following the more general demonstration of an entropy

production fluctuation theorem,21 note that

P(ω) =


dx dx̃ P(x)Pgen(x → x̃)δ(ω − ω(x, x̃))

=


dx dx̃ eω(x, x̃)P(x̃)Pgen(x̃ → x)δ(ω + ω(x̃,x))

= eωP(−ω), (3)

with ω(x, x̃) representing the entropy produced by a proposal
move from x to x̃ and δ denoting the Dirac delta function. We
are more likely to propose moves with positive entropy produc-
tion than we are to choose their negative counterparts. The
straightforward corollary, ⟨ω⟩ ≥ 0, is by analogy a statement
of the second law, and the equality is satisfied if and only if
P(ω) = δ(ω). A further consequence of Eq. (3) relates the MC
acceptance rate to the probability of attempting a move with a
negative value of ω, which we call p<. Specifically,



Paccept

�
=


dω P(ω)min

�
1,e−ω

�
= 2p<, (4)

which has been noted in the related context of replica exchange
Monte Carlo.22 As ⟨ω⟩ increases, p<, and therefore



Paccept

�
,

tends to decrease. We will see that ⟨ω⟩ scales with the number
of driven degrees of freedom, such that Monte Carlo sampling
of chain molecules or of long trajectories becomes especially
challenging.

We focus below on the sampling of dynamical pathways
(rather than individual configurations). In this case,ω is an “en-
tropy production” only by analogy, since the “non-equilibrium
transformations” affected by MC trial moves occur in the more
abstract space of trajectories. Lessons from Eq. (3) are never-
theless illuminating in the context of this abstract space.

III. TRANSITION PATH SAMPLING WITH STOCHASTIC
DYNAMICS

A. Trajectory space and trajectory subensembles

Let us now specialize to the sampling of discrete-time
stochastic trajectories with a fixed number of steps, tobs. The
probability of observing a trajectory, x(t) ≡ �

x0,x1, . . . ,xtobs

	
,

can be written as

P0[x(t)] ∝ ρinit(x0)
tobs−1
t=0

p(xt → xt+1), (5)

where ρinit is a distribution for the initial time point, frequently
an equilibrium or steady state distribution. The probability of
each time propagation step is denoted as p(xt → xt+1), the form
of which depends on details of the stochastic dynamics. We
refer to this propagation as the natural dynamics. Representa-
tive trajectories can be generated by sampling the initial state
and propagating natural dynamics.

In many contexts, it is useful to study a biased trajectory
ensemble constructed to highlight particular rare events. Com-
mon examples include the reactive subensemble,

Preactive[x(t)] ∝ P0[x(t)]hA(x0)hB(xtobs), (6)

and the so-called tilted ensemble,

Ptilted[x(t), s] ∝ P0[x(t)]e−sK [x(t)]. (7)
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In the former case, hA and hB are indicator functions which
constrain the endpoints of the trajectory to fall in regions of
phase space corresponding to reactants and products of a chem-
ical reaction or other barrier crossing process.13 In the latter
case, K[x(t)] is an order parameter reporting on dynamical
properties of the trajectory (e.g., the current,23 activity,12,24 or
entropy production25–27) and s sets the strength of bias.28 These
biased ensembles highlight classes of trajectories only rarely
sampled by the natural dynamics. To effectively sample them,
a Markov chain of correlated trajectories is constructed. The
correlations between subsequent steps of the Markov chain
ensure that newly generated trajectories are likely to share the
rare features that made the prior trajectory a good representa-
tive of the biased ensemble.

B. Sampling with shooting moves

One of the most general and effective methods for generat-
ing a trial trajectory is the shooting move, which is particularly
well-suited to sampling equilibrium dynamics.13 The move
proceeds as follows. A discrete time, tshoot, between 0 and
tobs is uniformly selected and designated the shooting time.
The state of the system at tshoot, perhaps slightly modified, is
then propagated forward and backward in time with natural
dynamics to yield a trial trajectory, x̃(t). The probability of
generating this trial takes the form

Pgen[x(t) → x̃(t)] = pgen
�
xtshoot → x̃tshoot

�

×
tshoot−1
t=0

p̄(xt+1 → xt)
tobs−1
t=tshoot

p(xt → xt+1),

(8)

where p̄ is the transition probability for time-reversed dy-
namics and pgen is the probability of the perturbation at the
shooting time. In the language of Sec. II, the entropy produced
by this trial move is given by

ω = ln
ρinit(x0)hA(x0)hB(xtobs)pgen(xtshoot → x̃tshoot)
ρinit(x̃0)hA(x̃0)hB(x̃tobs)pgen(x̃tshoot → xtshoot)

+

tshoot−1
t=0

ln
p(xt → xt+1)p̄(x̃t+1 → x̃t)
p̄(xt+1 → xt)p(x̃t → x̃t+1) . (9)

For trial trajectories to be accepted by the MCMC scheme, ω
must be small. However, when p and p̄ are not equal (as is
the case in driven processes), the sum in Eq. (9) has order tobs
nonvanishing terms.29 Consequently, ⟨ω⟩ scales linearly with
tobs, and P(ω) adopts the long-time form,

P(ω) ∼ exp [−tobsI(ω/tobs)] , (10)

with large deviation rate function I(ω/tobs). From this asymp-
totic expression for the entropy produced by a TPS move, one
might generally expect that the corresponding acceptance rate
decreases exponentially as tobs grows long.

This extensive growth of ⟨ω⟩ with time has an important
and general exception, namely, the case of microscopically
reversible dynamics. Under those conditions, the sum in Eq. (9)
vanishes and the only entropy production is contributed from
the endpoints of the trajectory (e.g., hA and hB). Since this
entropy production is subextensive in time, long trajectories

appear no more difficult to sample than short ones. The accept-
ability of trial trajectories, however, is also subject to biases
like those expressed in Eqs. (6) and (7). Because long trajec-
tories typically decorrelate strongly from one another, the rare,
biased qualities of a reference trajectory (e.g., reactivity or
inactivity) are recapitulated in the trial path with a probability
that also decays with tobs.

We conclude that the challenges for efficiently sampling
long trajectories are twofold. The TPS move must produce
entropy that is subextensive in observation time or the method
will not scale to long trajectories. Additionally, one must pre-
serve strong correlations between x(t) and x̃(t), so that rare
properties of interest are retained in the trial trajectory. In
Sec. IV, we show that these two goals are often conflicting.
In particular, we examine three general schemes for engi-
neering correlations between reference and trial trajectories
in shooting-like moves. Two of the schemes fail to exhibit
subextensive entropy production scaling while the remaining
scheme can only maintain strong trajectory correlations in
special cases.

IV. GUIDED DYNAMICS OF A 1D RANDOM WALKER

We explore the three methods for trial trajectory genera-
tion in the specific context of a one-dimensional discrete-time
random walker with equation of motion

xt+1 = xt + ξt, (11)

where at the tth time step, the noise ξt is drawn from the normal
distribution with zero mean and variance σ2. As a simple illus-
tration focusing on the effects of entropy production, suppose
we want to sample the unbiased trajectory distribution,

P0[x(t)] ∝ δ(x0) exp

−

tobs−1
t=0

(xt+1 − xt)2
2σ2


, (12)

where the initial position is set to zero without loss of gener-
ality.30 To construct a reference trajectory x(t), we draw a value
for ξt at each time step and propagate the walker’s position
according to Eq. (11). A trial trajectory is then generated by
evolving dynamics from the same initial configuration (with
a different realization of the noise or perhaps even a different
equation of motion).

We imagine that it is desirable for the trial trajectory to
retain a significant correlation with the reference path. This
goal is motivated by the challenges of sampling biased ensem-
bles as discussed above, but for the sake of simplicity, we
do not include such a bias here. To ensure this correlation,
we employ shooting moves that differ from the conventional
procedure described in Sec. III B. Specifically, we imple-
ment and scrutinize three distinct ways to engineer correlation
over long times: (a) adding artificial forces that pull the trial
trajectory closer to the reference, (b) preferentially selecting
among sets of otherwise unbiased short path segments, or (c)
using correlated histories of noises. We assess the influence
of these three biasing methods on the MCMC efficiency by
characterizing the distribution P(ω).
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A. Guiding forces

We first consider effecting correlations with guiding
forces, i.e., artificial contributions to the effective potential
that tend to lead the trial trajectory toward the reference. This
strategy is equivalent to using steered molecular dynamics31

to generate new trajectories. The trial trajectory x̃(t) is grown
with the equation of motion

x̃t+1 = x̃t + ξ̃t + k(xt − x̃t). (13)

We denote ξ̃t as the trial trajectory noise at time step t, also
drawn from a Gaussian with mean zero and variance σ2. The
linear spring constant k adjusts the strength of correlation be-
tween reference and trial trajectories. The probability that this
guided dynamics generates a particular trial from the reference
is given by

Pgen[x(t) → x̃(t)] ∝ exp

−

tobs−1
t=0

(x̃t+1 − x̃t − k(xt − x̃t))2
2σ2


.

(14)

The entropy production associated with the trial move depends
also on the probability of generating the reverse TPS move,
growing the reference trajectory with extra forces pulling it
close to the trial. It is straightforward to compute ω from
Eq. (2),

ω = − k
σ2

tobs−1
t=0

(xt − x̃t)(xt+1 + x̃t+1 − xt − x̃t). (15)

In this approach, ω can be physically interpreted as the differ-
ence between two work values: that expended by the artificial
force to guide the trial trajectory, versus the work that would
be required to conversely guide the reference. The resulting
distribution of entropy production, obtained from numerical
sampling, is shown in Fig. 1(a).

Since ω is given by a sum over all tobs time steps, P(ω)
adopts a large deviation form as in Eq. (10), and ⟨ω⟩ ∝ tobs.
These scaling properties are demonstrated numerically in
Fig. 2(a) and analytically in Appendix A. In the Appendix, we
re-express ω in terms of the ξ and ξ̃ variables, which can be
integrated over to yield

⟨ω⟩ = 2
(k − 2)2

�(2 − k) ktobs − 1 + (k − 1)2tobs
�
. (16)

Indeed, for 0 < k < 2, this expression gives the anticipated
long time scaling with tobs,

⟨ω⟩ ∼ 2ktobs

2 − k
. (17)

As seen in Fig. 1(a), the negative-ω tail of P(ω), which gives
rise to MCMC acceptances, becomes correspondingly small
for large tobs.

B. Guiding choices

In both Secs. III B and IV A, we showed that time-
extensive entropy production arises generically when we do
not use natural (forward) dynamics to generate a trajectory.
Dynamical biases can alternatively be achieved by prefer-
entially selecting among different examples of natural dy-
namics. At a high level, conventional TPS13 is just such an
approach, constructing biased trajectory ensembles through
selection rather than artificial forces. Can this strategy be used
effectively to impose resemblance between reference and trial
trajectories?

We consider a scheme very similar in spirit to the STePS
algorithm.15 Like configurational-bias MC sampling of a poly-
mer,32 the STePS procedure generates a long trajectory by
piecing together short segments, as illustrated in Fig. 1(b). To
generate a new segment, one starts at the end of the previous

FIG. 1. Three guidance schemes for generating a trial trajectory that maintains proximity to a reference trajectory. For the specific case of a one-dimensional
random walker, upper panels illustrate the consequences of (a) artificial corralling forces, (b) preferential selection of short trial branches, and (c) correlated noise
histories. Bottom panels show the corresponding distributions of trajectory space entropy production ω. The intensity of red shading reflects the probability that
trial moves are rejected. For cases (a) and (b), the average entropy production is nonzero and grows with trajectory length tobs. With an appropriately designed
noise guidance scheme (c), symmetric selection of noise variables results in identically zero entropy production for all trajectory lengths.
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FIG. 2. Entropy production statistics for trial moves with guiding forces (a) and guiding choices (b), as discussed in Secs. IV A and IV B of the main text. Results
in (a) are shown for k = 0.1; black curves indicate the long-time behavior determined analytically in Appendix A. Results in (b) are shown for n = 3,τ = 10 and
with f (x)= e−|x |. In both panels, different colors indicate different trajectory lengths, ascending from left to right: tobs= 30 (red), 50 (orange), 100 (yellow), 200
(green), 500 (cyan), and 1000 (purple).

segment and samples a collection of short, unbiased trajec-
tories according to the natural dynamics, which we will refer
to as branches. One of these branches is selected as the next
segment of the trial trajectory, with a preference for branches
that stay close to the reference trajectory. (Proximity could
be judged in different ways, e.g., through Euclidean distance
in the full phase space, or with respect to an order param-
eter.) Though each branch is grown with natural dynamics,
the added segment is biased. To show that this bias affects
acceptance rates in the same manner as the guiding forces bias,
we compute the entropy produced by a TPS move.

Starting at the initial condition of the reference trajectory,
we grow n branches of length τ according to

x(α)
t+1 = x(α)t + ξ

(α)
t , (18)

where α is an index over the n independent samples of the
natural dynamics. Of these n possibilities for the ith segment
of the trial trajectory, we select branch α with probability

Pselect(α) =
f (|x(0)iτ − x(α)iτ |)n

γ=1 f (|x(0)iτ − x(γ)iτ |)
, (19)

where f is a weighting function with a maximum when its
argument is zero, for example, a Gaussian centered on zero.
The reference trajectory is indicated by a superscript (0). Start-
ing from the end of the chosen branch, the growth procedure
is repeated with n new branches of length τ.

While each time propagation step uses segments of unbi-
ased natural dynamics, the selection of preferred branches
exerts a bias which ultimately leads to a nonvanishing entropy
production,

ω = −
tobs/τ
i=1

ln


γ,0 f (|x(γ)iτ − x(0)iτ |)
γ,αi

f (|x(γ)iτ − x(αi)
iτ |)

, (20)

where αi is the index of the selected branch for the ith segment.
The calculation of this entropy production requires generation
of the backwards TPS move, in which the (0) branch is always
selected.

In Sec. IV A, we discussed that the entropy produced by
guiding forces could be thought of in terms of a work per-
formed by the bias. From that perspective, this guiding choices

scheme trades work for information. We bias the dynamics
not by applying explicit forces but instead by selecting the
preferred branches based on information about the likelihood
that a branch stays close to the reference. In particular, ω
is a difference between the Shannon information associated
with selecting the set of trial branches which produced the
trajectory x̃(t) and the information associated with selecting
the reference branches in a reverse TPS move. As with biasing
forces, the trajectory space entropy production exhibits large
deviation scaling with ⟨ω⟩ ∝ tobs. Numerical demonstrations of
this scaling are provided in Fig. 2(b). Consequently, acceptance
probabilities drop precipitously in the long time limit.

C. Guiding noises

As a third scheme for engineering path correlation, we
consider generating a trial trajectory with natural dynamics
but with biased noises. Rather than trying to corral trajec-
tories to proceed along similar paths, one may impose much
simpler correlations between their underlying noise histories.16

Consider a TPS trial move which consists of re-propagating
dynamics from the initial time step using new noises ξ̃ that
differ only slightly from the old noises ξ,

ξ̃t = αξt +
√

1 − α2ηt, (21)

where ηi is sampled from a Gaussian distribution with zero
mean and variance σ2. In Sec. IV B, the symbol α was used as
an index, but here we redefined α to be the parameter control-
ling noise correlations. Guiding Gaussian noise variables in
this manner has been referred to as a Brownian tube proposal
move.17 Unlike the prior two kinds of moves, the Brownian
tube proposal produces strictly vanishing entropy production
ω for all trials regardless of trajectory length. The cancellation
results from some algebra after writing the path weights and
generation probabilities in terms of the noise variables,

P(ξ)Pgen(ξ → ξ̃)
P(ξ̃)Pgen(ξ̃ → ξ) =

exp

− ξ2

2σ2


exp


− (ξ̃−αξ)2

2(1−α2)σ2



exp

− ξ̃2

2σ2


exp


− (ξ−αξ̃)2

2(1−α2)σ2

 = 1, (22)

where ξ is a vector detailing noises at all times.
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The vanishing entropy production is achieved by inde-
pendently sampling the noise variables. In the previously dis-
cussed approaches, the bias applied to any one noise variable
depended on how far astray the trial trajectory had drifted from
its reference up to that point in time. Such history-dependent
biasing coupled the sampling of one noise variable to all of
the previous noises, ultimately giving rise to the nonvanishing
ω. By sampling all noises independently, we can perturb the
ξ variables in a symmetric manner. For noises drawn from a
Gaussian distribution, this symmetric perturbation was given
in Eq. (21), but the strategy of symmetrically sampling inde-
pendent noises generalizes to other choices of stochastic dy-
namics. For example, Hartmann has applied these methods
with uniform random variable noises to Monte Carlo dynamics
in the form of Wolff dynamics of a two-dimensional Ising
model.33

Using correlated noise histories to sample Monte Carlo
trajectories avoids the time-extensive bias that arose from guid-
ing paths in configuration space, but this merit comes at a
cost. If the reactive or tilted ensembles are to be sampled, it is
important that the guidance scheme produces highly correlated
trajectories. That is to say, the x coordinates, not just the
ξ coordinates, must be correlated. When will similar noise
histories produce similar trajectories? In the remainder of the
paper, we address this question in the context of two dynamical
systems, one on-lattice and the other off-lattice.

V. EFFICACY OF NOISE GUIDANCE

In Sec. IV C, we noted that sampling trajectories with
noise-guided shooting moves avoids a time-extensive MC en-
tropy production. However, we seek correlated trajectories, not
just correlated noises. When trajectories with correlated noises
synchronize, efficient path sampling of long trajectories can be
achieved. But under what conditions should such synchroni-
zation be expected? We investigate this question by studying
lattice dynamics of a two-dimensional Ising model and off-
lattice dynamics of a WCA fluid, also in two dimensions. We
show that synchronization can be achieved with a suitable
treatment of Ising dynamics. This success does not extend to
our example of off-lattice dynamics.

A. Ising dynamics

Let us first consider a two-dimensional Ising model con-
sisting of N spins. The ith spin, denoted σi, takes the value
±1. The lattice evolves, at inverse temperature β, under single
spin-flip Glauber dynamics with Hamiltonian

H = −h

i

σi − J

⟨i j⟩

σiσ j . (23)

The spins interact in the usual Ising manner; they couple to
nearest neighbors with coupling constant J and to an external
field h. Each spin-flip trial move requires us to choose two
random numbers uniformly from [0,1). One random number,
ξsite, determines which site will be flipped. The other random
number, ξacc, determines whether to accept or reject the flip.
Given ξsite and ξacc, the spin-flip move is deterministic.

1. Choose spin i = ceiling(ξsiteN) to act on.
2. Construct a trial state by flipping spin i.
3. Compute the energy difference, ∆E, between the original

configuration and the trial.
4. Accept the spin flip if ξacc < (1 + exp(β∆E))−1.

By carrying out tobs sequential MC sweeps, each consisting of
N spin flip moves, we construct an Ising trajectory, σ(t). The
effective unit of time is taken to be a MC sweep.

Now consider a noise-guided trial TPS move designed
to generate a trajectory σ̃(t) which is correlated with σ(t).
At every MC step we alter ξsite and ξacc to some trial values,
ξ̃site and ξ̃acc. There is significant freedom in doing so, while
producing zero entropy,34 and we analyze one particular
choice. We focus first on updating the noise that chooses which
spin to flip. With probability 1 − ϵ site, we reuse the old noise,
i.e., ξ̃site = ξsite. Otherwise, we uniformly draw a new value of
ξ̃site from the unit interval. The tunable parameter ϵ site controls
the correlation between noise histories of the reference
and trial trajectories. We update the noises that control
conditional acceptance, ξacc, in an analogous manner. Another
parameter, ϵacc, is the probability of drawing new noise for
ξ̃acc.

Starting with the initial configuration ofσ(t), we construct
σ̃(t) by performing spin flips with the new trial noise
history. The trial and reference trajectories start in identical
configurations, but we expect the correlation to decay as MC
time advances. To monitor the similarity between reference
and trial, we study the site-wise product between σ and σ̃
as illustrated in Fig. 3. The average of this product over all
spins,

σ · σ̃ = 1
N

N
i=1

σiσ̃i, (24)

is a measure of correlation between σ and σ̃. Decorrelated
configurations return a value of zero while identical config-
urations return one. Fig. 4(a) shows that the average corre-
lation between σ(t) and σ̃(t) decays to zero at long times.
The rate of this decay is tuned by ϵacc and ϵ site, the parame-
ters controlling the extent of noise correlation. At long times,
⟨σ · σ̃⟩ eventually approaches zero, even with the strongest
noise guidance. The corresponding “uncorrelated” configu-
rations, however, bear a subtler resemblance. Some regions
are significantly correlated, while others are significantly anti-
correlated, averaging to give σ · σ̃ ≈ 0.

Motivated by this subtler resemblance, we introduce a
minor alteration in the implementation of Glauber spin-flip
dynamics. Below we detail this modification and show that
it does in fact enable the preservation of correlation between
trajectories over very long times. As observed in the context
of damage spreading, different choices of Ising model Monte
Carlo dynamics can result in identical equilibrium states yet
different dynamical properties.35,36 The effectiveness of corre-
lated noises in guiding trajectories is, in effect, one such
dynamical property.

In particular, we replace step 2 of the spin-flip move to
include a directionality. We introduce another random number,
ξdir ∈ [0,1), used to decide the trial state. If ξdir < 0.5, the
trial state is a down spin; otherwise it is up. Whereas the
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FIG. 3. Correlations between a reference trajectory and a trial trajectory generated by the noise guidance method described in Sec. V A using ϵdir= ϵsite= 10−3

and ϵacc= 0.1. The two trajectories begin with identical initial conditions and evolve through 100 sweeps of push up/push down Monte Carlo steps at
βJ = 0.3,h = 0. Final configurations of reference and trial trajectories are shown in (a) and (b), respectively. The site-wise overlap between these two
configurations is depicted in (c), where black indicates spin alignment and white indicates anti-alignment.

conventional trial move affects an attempted spin flip, this trial
move can be viewed as an attempt to push the spin either up or
down, depending on the state of ξdir. As with the other noise
variables, correlations between ξdir and ξ̃dir are tuned by the
probability ϵdir of resampling the noise.

The addition of directionality to the spin-flip dynamics
results in moves which are trivially ineffectual. For example,
half of the spin moves attempt to “push up” a spin which
is already up. These moot moves are absent from the tradi-
tional implementation of single-spin-flip Glauber dynamics,
which attempts a spin flip at every step of MC time. In every
other respect, the two schemes generate Markov chains with
identical statistics. They can therefore be made identical by
excising moot moves, or, equivalently on average, by scaling
time by a factor of two.

As Fig. 4(b) illustrates, the push up/push down imple-
mentation of single-spin-flip Glauber dynamics allows the
trial trajectories, σ̃(t) to remain close to σ(t) for long times.
By incorporating information about spin change directionality
into the noise history, the noises signal not just how likely a
spin is to change but in what direction it will change. Appro-
priately chosen ϵ parameters can maintain tunable correlations
between trajectories for arbitrarily long time. When averaged

over the whole lattice, steady state correlation is maintained,
but the correlations are spatially homogeneous. As MC time
progresses, the regions in which two trajectories are highly
correlated move throughout the lattice, ensuring ergodic explo-
ration of the trajectory space.

For push up/push down dynamics, noise guidance does
not merely preserve correlations that existed at time zero. We
find that correlated noise histories can in fact induce synchroni-
zation between trajectories. To illustrate this synchronization
effect, we have characterized the correlation between trajec-
tories that share similar noise histories only intermittently. As
shown in Fig. 5, such paths acquire similarity during periods of
strong noise guidance. This similarity degrades during periods
without noise guidance, but can be recovered by re-introducing
guidance, regardless of how significantly correlations have
decayed. Indeed, even very different initial configurations,
propagated with correlated noises, become more similar with
time, their ensemble-averaged correlation ⟨σ · σ̃⟩ converging
to the same value as for trajectories that are identical at time
zero.

A nonzero steady state value of ⟨σ · σ̃⟩ is the quantitative
signature of synchronization. The origins of this finite asymp-
totic correlation are transparent in the limit of weak coupling,

FIG. 4. Average overlap between reference and trial trajectories of a 40×40 two-dimensional Ising model with βJ = 0.3. Results are shown in (a) for ordinary
Glauber spin flip dynamics and in (b) for the modified directional dynamics described in Sec. V A. Two trajectories with identical initial conditions and
different-but-correlated noise histories (solid lines) maintain a nonzero steady state overlap at long times only for the case of push up/push down dynamics. The
same steady state values are obtained when the two trajectories evolve from very different initial conditions (dashed lines) generated by independently assigning
each spin at random. Different colors indicate different values of the noise guidance parameter ϵacc. Ensemble-averaged results are shown for ϵsite= ϵdir= 0.001,
with averages performed over 500 independent pairs of trajectories.
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FIG. 5. Correlation between reference
and trial trajectories of a 40×40 Ising
model with βJ = 0.3. Plotted lines are
averages over 500 independent pairs of
trajectories that evolve by push up/push
down dynamics. Noise histories of each
pair are generated in a correlated man-
ner with ϵsite= ϵdir= 10−3 during the in-
tervals t = 25–50 and t = 150–200 (the
shaded regions); noise guidance is ab-
sent at all other times. The site-wise
correlation between an example trajec-
tory pair (with ϵacc= 10−3) is shown
above the graph, with time advancing
from left to right and adjacent config-
urations separated by 25 MC sweeps.

βJ = 0. With the additional simplification h = 0, each at-
tempted spin flip is accepted with probability 1/2 based on the
value of ξacc, regardless of the states of neighboring spins. In
this case, the steady state overlap can be calculated analytically.
To do so, we derive an equation of motion for the probability
p(τ) that a given spin has identical values in the reference and
trial trajectories after τ MC steps. Note that τ differs from the
unit of MC time, t, by a factor of N . The long-time, steady-
state limit of this time evolution, pss = limτ→∞ p(τ), yields
⟨σ · σ̃⟩ss = 2pss − 1. In Appendix B, we tabulate the various
ways that a selected spin can become identical in reference and
trial trajectories after a single time step. From this enumeration,
and the corresponding probabilities, we find

p(τ + 1) = N − 1
N

p(τ) − ϵdir

4N

(
1 − ϵ site +

ϵ site

N

) (
1 − ϵacc

2

)
+

1
2N

(
1 − ϵacc

2

) (
1 − ϵ site +

ϵ site

N

)
p(τ) + 1

2N
.

(25)

The various terms of Eq. (25) describe the different ways
that a single MC move can impact the state of an arbitrarily
chosen spin in trial and reference trajectories. Since each move
of our MC dynamics acts on a single site of the lattice, some
moves do not involve the tagged spin at all, but instead some
other lattice site; the first term in Eq. (25) reflects this possi-
bility. The second term accounts for the decrease in overlap
when reference and trial trajectories accept a spin-flip at the
same site but in opposite directions. The third term results from
the constructive action of correlated noises on the tagged spin,

either maintaining existing correlation or inducing synchroni-
zation, as detailed in Appendix B. The final term accounts for
random alignment of the tagged spin despite uncorrelated noise
variables, a possibility particular to degrees of freedom with a
limited number of discrete states. Equating p(τ) and p(τ + 1)
gives the steady state probability,

pss =
1 − ϵdir

2

�
1 − ϵacc

2

� �
1 − ϵ site +

ϵsite
N

�

2 −
�
1 − ϵacc

2

� �
1 − ϵ site +

ϵsite
N

� . (26)

Analytically calculating steady-state overlap at finite tem-
perature is not straightforward. Numerical results, shown for
βJ = 0.4 in Fig. 6, indicate that the dependence of overlap
on strengths of noise perturbation is generically similar to
the βJ = 0 case analyzed above. Increasing βJ from zero
does, however, slow the rate of convergence to the steady
state while decreasing the degree of steady state correlation.
For all coupling strengths we have examined, ⟨σ · σ̃⟩ss can
be made arbitrarily close to unity by decreasing the various ϵ
parameters. This level of control ensures that one can generate
trial trajectories which are correlated with a reference for all
times, an essential capability for efficient path sampling of long
trajectories.

B. WCA dynamics

The success we have achieved in synchronizing Ising
dynamics with noise guidance should not be expected for
complex dynamical systems in general. We demonstrate this
limitation for the specific case of a two-dimensional WCA

FIG. 6. Steady state correlations be-
tween reference and trial trajectories of
a 40×40 Ising model, as a function
of noise guidance strength. Results are
shown for push up/push down dynamics
with ϵdir= 0.001. The high-temperature
limit Eq. (26) is shown in (a). Finite
temperature behavior (b) was obtained
by sampling 4×104 pairs of trajecto-
ries for 340 MC sweeps each, with βJ
= 0.4.
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fluid38 evolving by underdamped Langevin dynamics. The
purely repulsive particles are propagated using an integration
scheme that requires generating a collection of Gaussian
random variables.39,40 These noises are guided by a Brownian
tube proposal, Eq. (21). The similarity between trial and
reference noise histories is controlled by a parameter α that
ranges from zero (no noise guidance) to one (complete noise
guidance).

Starting from identical initial configurations, we propa-
gate dynamics with correlated noise histories and monitor the
difference between trial and reference as

⟨|x − x̃|⟩ = 1
N

N
i=1

���x
(i) − x̃(i)��� , (27)

where x(i) and x̃(i) are the positions of particle i in the refer-
ence and trial, and |·| is the two-dimensional Euclidean dis-
tance. At short times, the difference between trial and reference
trajectories is small, but this difference grows exponentially, a
hallmark of chaotic dynamics. Even with exceptionally strong
noise guidance, trajectories cannot be held arbitrarily close to
each other for long times, as shown in Fig. 7.

Why are we unable to guide the evolution of WCA parti-
cles as effectively as we guided Ising dynamics? A principal
difference between the two systems is the likelihood of sponta-
neous local recurrences. In either case, trajectories with similar
initial conditions but different noise histories wander away
from one another in a global sense, eventually exploring very
different regions of configuration space. Correlating their noise
histories generally acts to defer, but not defeat, this diver-
gence. In the case of Ising dynamics, however, a given small
block of adjacent spins will occasionally align spontaneously
in two trajectories with reasonable probability. Following such
a spontaneous, local recurrence, correlated noises again work
to hold trajectories close. Global spontaneous recurrence of a
large number of spins is, of course, highly improbable, but the

FIG. 7. Divergence between reference and trial trajectories of a two-
dimensional WCA fluid with Brownian tube noise guidance of strength α.
Average distance between the two trajectories, as defined in Eq. (27), is
shown for a system of 400 particles with mass m and diameter σ, in a
square box with side length 24 σ (i.e., density ρσ2= 0.694). Underdamped
Langevin dynamics was propagated with inverse temperature β = 0.2 and
friction coefficient γ = 0.1 using a time step of 0.005 τ, where τ =


mσ2/ϵ

and ϵ is the Lennard-Jones interaction energy scale.37 Data are averaged over
500 independent trial trajectories.

noise guidance seems to “lock in” local correlations every time
they spontaneously reoccur.

VI. CONCLUSION

Transition path sampling has proven useful for a variety
of equilibrium, as well as non-equilibrium, problems in chem-
ical dynamics. The problem of sampling long trajectories,
particularly those with multiple intermediates, has hindered a
variety of extensions and applications of the methodology. We
have outlined a modern physical perspective from which to
assess and address these challenges. We have demonstrated
and discussed successful trajectory guidance in the case
of Monte Carlo dynamics of an Ising model. Substantial
difficulties remain for systems with continuous degrees of
freedom.

Our results suggest that effective noise guidance of long
trajectories requires a nonnegligible probability of sponta-
neous local recurrence, i.e., a significant chance that reference
and trial trajectories transiently align within small regions of
space. Such synchronization could be particularly helpful for
sampling reactive trajectories that traverse metastable inter-
mediate states, for example, the coarsening or assembly of
colloidal systems as they organize on progressively larger
scales. In such cases, trial trajectories in the course of path
sampling should maintain correlations with the reference while
passing through the intermediates, not just at the endpoints.
Even without identifying metastable configurations, correlated
noises could be applied during some intervals but not others.
A tendency to synchronize would enable trial trajectories to
explore widely during unguided periods but to be reined in
globally by intermittent guidance.

We anticipate that these noise-guidance methods will be
effective for other lattice systems as well, but their useful-
ness could depend sensitively on the exact manner in which
the noise influences dynamics. In particular, without incor-
porating directionality into proposed spin changes, we were
not able to guide long Ising trajectories. Furthermore, Ising
dynamics can exhibit spontaneous recurrence, i.e., transient
local alignment between two trajectories regardless of their
noise histories. Because small blocks of Ising spins can adopt
only a modest number of configurations, such random local
synchronization occurs with an appreciable probability. The
probability of recurrence will likely be lower for models with
a larger collection of possible local configurations, e.g., a Potts
model or an Ising model with more neighbors. We thus expect
that the application of noise-guided path sampling could face
substantial challenges for long trajectories of these more intri-
cate lattice models.
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APPENDIX A: ENTROPY PRODUCTION STATISTICS
FOR A ONE-DIMENSIONAL RANDOM WALKER
WITH GUIDING FORCES
1. Mean entropy production

Here, we analytically characterize the entropy production
distribution, P(ω), for shooting moves generated with guiding
forces as discussed in Sec. IV A. It is useful to first rewrite
Eq. (2) in terms of the noise variables, ξ and ξ̃. For a one-
dimensional random walk, the position xt+1 and the difference
between reference and trial trajectories, xt+1 − x̃t+1, can be
compactly expressed in terms of the noises,

xt+1 =

t
u=0

ξu, (A1)

xt+1 − x̃t+1 =

t
u=0

(1 − k)t−u(ξu − ξ̃u). (A2)

After straightforward algebra, it is possible to express ω as

ω =
1
σ2

tobs−1
t=0

�
S2
t − Stξ+t

�
, (A3)

where for convenience we have defined ξ+t ≡ ξ̃t + ξt + 2µ,
ξ−t ≡ ξ̃t − ξt, and

St ≡
t−1
u=0

k(1 − k)t−1−uξ−u . (A4)

The main text presents results for a random walk without drift,
i.e., with ξ drawn from a distribution with mean zero. Here, we
consider the more general case with nonzero mean µ. Noting
that



ξ+t ξ

+
u

�
=


ξ−t ξ

−
u

�
= 2σ2δtu and



ξ+t ξ

−
u

�
= 0, the average

entropy production is found to be

⟨ω⟩ = 2
tobs−1
t=0

t−1
u=0

k2(1 − k)2(t−1−u). (A5)

The two geometric series are summed to yield

⟨ω⟩ = 2
(k − 2)2

�(2 − k) ktobs − 1 + (k − 1)2tobs
�
. (A6)

When k > 2, ⟨ω⟩ grows exponentially in tobs. This superlinear
scaling results from coupling between trajectories so strong
that the trial trajectory rapidly tends to infinity due to a numer-
ical instability, much like the instability that arises in conven-
tional molecular dynamics simulations performed with an
excessively large integration time step. For the useful range of
coupling strength, k < 2, ⟨ω⟩ ∝ tobs in the long time limit. The
marginal k = 2 case is well-behaved (⟨ω⟩ = 4tobs (tobs − 1)) but
uninteresting for our purposes.

2. Cumulant generating function

The behavior of the higher-order cumulants can be ex-
tracted from the cumulant generating function ln



e−λω

�
. This

average requires integration over all of the Gaussian ξ and ξ̃
variables at all times, which can be performed inductively. We
define φ(λ, f , g,h, t) as

φ(λ, f , g,h, t) = f
(

1
2σ
√
π

)2t 
dξ+0 . . . dξ+t−1dξ−0 . . . dξ−t−1 exp



1
σ2

t−2
i=0

*
,

−(ξ+i )2 − (ξ−i )2
4

+ λSiξ+i − λS2
i
+
-



× exp


1
σ2

*
,

−(ξ+t−1)2 − (ξ−t−1)2
4

+ λ
�
St−1ξ

+
t−1 − hS2

t−1 + 2gk(1 − k)St−1ξ
−
t−1 + gk2(ξ−t−1)2

�+
-


. (A7)

The integral φ is defined such that


e−λω

�
= φ(λ,1,0,1, tobs).

By introducing f , g, and h, we can derive recursion relations
as we sequentially integrate out Gaussian noises at the lat-
est remaining time step. In particular, integration over ξ−t−1
then ξ+t−1 returns an integral of the same form. That is to say
φ(λ, f i, gi,hi, t) = φ(λ, f i+1, gi+1,hi+1, t − 1) with

f i+1 =
f i

1 − 4λgik2
, (A8)

gi+1 = λ − hi +
4λg2

i (1 − k)2k2

1 − 4λg1k2 , (A9)

hi+1 = 1 − (1 − k)2 *
,
(λ − hi) + 4λg2

i (1 − k)2k2

1 − 4λgik2
+
-
. (A10)

Iterating the map tobs times corresponds to integrating over
all of the 2tobs integrals in Eq. (A7). After some algebraic
simplification,

ln


e−λω

�
= −1

2

tobs−1
i=0

ln(1 − 4λgik2), (A11)

where g0 = 0 and

gi+1 = λ − 1 +
(1 − k)2gi
1 − 4λgik2 . (A12)

The scaled cumulant generating function is then given by

lim
tobs→∞

1
tobs

ln


e−λω

�
= −1

2
ln(1 − 4λg∗k2), (A13)
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where g∗ is a fixed point of the map given in Eq. (A12). Specif-
ically, it is the lesser of the two roots of the quadratic equation
obtained when gi = gi+1 ≡ g∗ is inserted into Eq. (A12). The
numerical Legendre transform of this scaled cumulant gener-
ating function gives the solid black curve in Fig. 2(a), toward
which the results of numerical sampling should converge for
long tobs.

APPENDIX B: ISING MODEL STEADY STATE
CORRELATIONS

To derive the steady state correlation between reference
and trial trajectories, we examine the time evolution of the
probability p(τ) that reference and trial overlap at site i and
MC step τ. Without loss of generality, we focus on a particular
site, i = 1. Push up/push down moves can be grouped into
four classes: (i) the reference and trial each act on spin 1, (ii)
the reference acts on spin 1 while the trial acts on a different
spin, (iii) the trial acts on spin 1 while the reference acts on a
different spin, or (iv) neither reference nor trial acts on spin
1. For each case, we derive a transition matrix which maps
the vector (p(τ),1 − p(τ)) to its state at MC step τ + 1. The
full transition matrix for a step of dynamics is the sum of
these transition matrices, weighted by the probability of each
case,

T =
(
1 − 1

N

(
1 + ϵ site −

ϵ site

N

))
I +

1
N

(
ϵ site −

ϵ site

N

)
Q

+
1
N

(
ϵ site −

ϵ site

N

)
R +

1
N

(
1 − ϵ s +

ϵ site

N

)
S. (B1)

The transition matrix for case (iv) is the identity matrix, since
this case cannot alter the overlap at site 1. The transition
matrices for cases (i), (ii), and (iii) are Q,R, and S, respectively,
the forms of which we now derive.

When reference and trial act on different spins, only one
copy of spin 1 (the reference or the trial) can change its state.
When the two copies differ at site i after τ steps, overlap is
induced with probability 1/4 (i.e., the probability that any given
move results in a change of spin state). For initially aligned
copies, loss of overlap similarly occurs with probability 1/4.
This logic applies equally well to cases (ii) and (iii), so

TABLE I. Enumeration of moves yielding σ′= σ̃′. Without loss of gener-
ality, we only list the moves which start with σ = 1. The moves starting
with σ =−1 are analogous. d is the direction of a push with 1 meaning
up. a indicates whether the move is accepted (1) or rejected (0). An asterisk
indicates that both options yield the same result.

σ d a σ′ σ̃ d̃ ã σ̃′ Probability

1 1 * 1 1 1 * 1 p
2
�
1− ϵdir

2
�

1 1 * 1 1 −1 0 1 ϵdirp
8

1 1 * 1 −1 1 1 1 1−p
4

�
1− ϵdir

2
�

1 −1 0 1 1 1 * 1 ϵdirp
8

1 −1 0 1 1 −1 0 1 p
4
�
1− ϵdir

2
��

1− ϵacc
2
�

1 −1 0 1 −1 1 1 1 1−p
4

� ϵdir
2
�� ϵacc

2
�

1 −1 1 −1 1 −1 1 −1 p
4
�
1− ϵdir

2
��

1− ϵacc
2
�

1 −1 1 −1 −1 1 0 −1 1−p
4

� ϵdir
2
�� ϵacc

2
�

1 −1 1 −1 −1 −1 * −1 1−p
4

�
1− ϵdir

2
�

Q = R = *
,

3/4 1/4
1/4 3/4

+
-
. (B2)

When both reference and trial act on site 1, we must
account for correlated influence on the two copies. As a result,
S depends on ϵacc and ϵdir. To enumerate these correlated
changes, we denote states of spin 1 at step τ in the reference
and trial as σ1 and σ̃1, respectively. After the MC step, these
spins are given by σ′1 and σ̃′1. Table I lists the possible trans-
formations which result in overlapping spins (σ′1 = σ̃′i) after
τ + 1 steps. Collecting terms in the table and making use of
the fact that S is a probability-conserving transition matrix, we
find

S =
1
2
*..
,

1 +
(
1 − ϵdir

2

) (
1 − ϵacc

2

)
1 − ϵdir

2

(
1 − ϵacc

2

)
1 −

(
1 − ϵdir

2

) (
1 − ϵacc

2

)
1 +

ϵdir

2

(
1 − ϵacc

2

)+//
-
.

(B3)

Propagation according to the transition matrix T gives the
overlap probability after a single MC step,

*
,

p(τ + 1)
1 − p(τ + 1)

+
-
= T *

,

p(τ)
1 − p(τ)

+
-
. (B4)

The first row of this matrix equation reads, after some algebra,

p(τ + 1) = p(τ) − p(τ)
N
+
ϵ site − ϵsite

N

2N
+

1 − ϵ site +
ϵsite
N

2N


1 − ϵdir

2

(
1 − ϵacc

2

)
+

(
1 − ϵacc

2

)
p(τ)


. (B5)

We are interested in the steady state solution, found by setting
p(τ) = p(τ + 1). Multiplying the equation through by N , fol-
lowed by algebraic simplification, yields Eq. (26) of the main
text.
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