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It is shown that standard three- and two-dimensional Ewald summation of point charge electrostatics is
naturally extended to Gaussian charge distributions. The Gaussian nature of the charges does not affect
the regularisation of the conditionally convergent sums, which are performed with spherical and cylin-
drical orderings, respectively. A clear connection is made between the summation of Gaussian charges
and the summation of the associated point charge system. The application of these sums to a simple clas-
sical model of a metal surface is discussed. Calculations on a conducting sphere highlight the importance
of the model parameterisation.
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1. Introduction

The construction and application of classical (non-quantum)
simulation models (in which the atoms’ interactions are repre-
sented by relatively simple functions of their positions) remains
a crucial field of study. Despite huge advances in quantum method-
ology, in particular related to the application of density-functional
theory (DFT), reliable classical models still afford both greater
length- and time-scales to aid the study of fundamental material
properties. Furthermore, the ability to effectively tune the underly-
ing interactions (through manipulation of the system parameters
controlling the respective contributions to the total potential en-
ergy) allows factors which dominate the system properties to be
uncovered (an ability which is difficult to achieve within the con-
straints of a full quantum calculation).

The construction of models with metallic systems presents spe-
cific problems due to the polarization of the metal [1–3]. The sim-
ulation of the behaviour of ions near metallic surfaces is important
if, for example, electrochemical processes are to be effectively
modeled [4]. Molecular dynamics simulations of ions near metallic
surfaces can be performed with relatively expensive ab initio meth-
ods [5–7], but to access long time scale dynamics a simpler classi-
cal metal model is needed. For macroscopic systems, metal
surfaces may be treated with an image charge or Green’s function
approach [8], but on the microscopic level the atomic structure
introduces uncertainty in the exact geometry of the equipotential
surface. In general this surface will be corrugated on an atomic
scale causing the image charge approach to break down at short
range [9].
ll rights reserved.
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Given that the image charge is a mathematical construct to cap-
ture the effects of the surface charge distribution, it is natural that
the image charge potential can be reproduced at long range by
introducing a set of discrete classical surface charges [2]. By treat-
ing the surface charge density directly, Finnis et al. demonstrated
that even the short-range behaviour of the discrete classical model
agrees remarkably well with ab initio DFT calculations [10]. More
recent work, initiated by Siepmann and Sprik, has furthered this
idea by modeling metals as a Gaussian charge on each atomic site,
with variable charge magnitudes tuned to make the electric poten-
tial at each site equal [11,12]. In essence the model is a rudimen-
tary classical density functional theory with a highly restrictive
basis of a single Gaussian per metal atom. This model has allowed
relatively long time scales to be accessed, which have enabled
fruitful studies of fundamental electrochemistry [13–15].

When models of the type presented by Siepmann and Sprik are
treated with periodic boundary conditions, the accurate determina-
tion of the (long range) electrostatic interactions is required. One
widely used method is the Ewald summation [16] in which the
interactions are partitioned into rapidly convergent series, deter-
mined in real and reciprocal space, the partition being controlled
by a single screening parameter. In order to utilise the potential
power of the Gaussian charge models, therefore, the Ewald summa-
tion must be adapted to account for these non-point charge distri-
butions. This adaptation has been previously presented for the 2D
Ewald summation, but we demonstrate that formula to be slightly
erred [12]. The resolution of this error reveals the intuitive fact that
an efficient Ewald summation of Gaussian distributions should only
differ from the point charge expression in the short-range real
space calculation since at sufficiently long-range Gaussians and
point charges should become indistinguishable.

It is well known that the Coulomb energy of a periodically
replicated system is given by a conditionally convergent infinite
series [17]. Such a sum is ill-defined unless the order of summation
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is restricted [18]. The convergence factor method of de Leeuw et al.
provides a mathematical mechanism for imposing a spherical or-
der of summation [17]. The method isolates the divergences and
demonstrates that they vanish in a charge-neutral system. Recent
work using a different regularisation method extends these results
to charged systems [19]. It is tempting to believe that the Gaussian
nature of our charges will not alter the order of summation and the
convergence factor results can be borrowed freely, but charge dis-
tribution ‘belonging’ to one Gaussian can always be found on either
side of a neighbouring site. This complicates the order of summa-
tion sufficiently that we chose to explicitly perform the conver-
gence factor calculations. We show that the Ewald summation of
Gaussian distributions is in fact a natural extension of the point
charge summation. Critically, the two problems are shown to share
the same divergent reciprocal space terms such that previous work
on the conditional convergence of the point charge system can be
freely applied to Gaussian charges.

We proceed to address the 2D Ewald summation of Gaussian
charges as presented in the work of Reed et al. [12]. The conver-
gence factor methods are used to reproduce this calculation with
a cylindrical order of summation imposed. As with 3D Ewald, it
is seen that the differences between Gaussian charges and point
charges should be treated entirely in real space. In contrast, earlier
work on the subject uses an Ewald screening parameter that de-
pends on the width of the Gaussian charges, so the reciprocal space
term is affected by the introduction of Gaussian charges. We show
that this is unnecessary since the screening parameter can be ad-
justed to optimise convergence. Judicious partitioning between
the real space and reciprocal space terms reveals that the energy
reported by Reed et al. is that of a point charge system with an
added on-site Gaussian self-energy. In other words, the energy
expression does not reflect the fact that altering the size of the
Gaussians also affects the strength of interactions between neigh-
boring sites. We identify and correct the source of this error.

Finally, we reflect upon the selection of the Gaussian width, the
only free parameter of the Siepmann/Sprik model [11]. Prior
accounts have described fitting this width to continuum limits
[11,12]. Clearly these continuum limits must be recovered at mac-
roscopic distances, but we argue that these limits will necessarily
be insensitive to the Gaussian size. As a consequence, comparison
to the macroscopic behaviour is an improper way to select the
Gaussian width. Rather, the parameter should be considered as a
crude approximation of the surface atoms’ electronic structure,
and should therefore be chosen by fitting to a suitable ab initio cal-
culation. The significance of this parameterisation is illustrated by
comparing the simple metal model with the analytic image charge
solution for a conducting sphere [8].

2. 3D Ewald summation with Gaussian charges

We consider a system of Gaussian charges having spread
ð
ffiffiffi
2
p

gÞ�1 such that the total charge distribution is

qðrÞ ¼
Xn
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gffiffiffiffi
p
p
� �3

qi expð�g2jr� rij2Þ; ð1Þ

with the ith Gaussian charge centred at ri with integrated magni-
tude qi. Following the method of de Leeuw et al., the convergence
factor expð�sjnj2Þ is used to impose a spherical ordering on the
sum [17]. We define a uniformly convergent extension of the
Coulomb energy, U3DðsÞ such that the spherically summed Coulomb
energy will be returned in the s! 0 limit:

U3DðsÞ ¼
g6

2p3
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where n ¼ kaþ lbþmc for primitive cell vectors a, b, c. Notably
the sum includes the i ¼ j; n ¼ 0 term that would be excluded
from the analogous point charge problem. This on-site Gaussian
self-energy reflects the fact that Gaussian charge density on site
i interacts with the rest of the charge density centred on that
same site. As employed previously [12], we make use of the
identities
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to rewrite the energy with integration over dummy variables t, v,
and w,
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Following de Leeuw et al. [17], the algebraic identity,
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is used with r ¼ rij þ r00 � r0 to give
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Jacobi’s imaginary transformation,
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is applied to Eq. (7), yielding
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where k ¼ 2p k
a ;

l
b ;

m
c

� 	
. We now can integrate over r0 and r00 by

changing variables to rþ ¼ r00 þ r0 and r� ¼ r00 � r0:
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Using the standard identity,Z
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we perform the integral over rþ to obtain
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Changing variables once more to r ¼ rij þ r� reveals a Gaussian inte-
gral over r. Performing this integration and using the d-function to
eliminate the integral over w gives
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The integral over v is also a Gaussian integral. Integrating one last
time leaves

U3DðsÞ ¼
pg3

2abc

Z 1

0
dt t�1=2ð2sþ ðsþ tÞg2Þ�3=2

�
X
i;j;k

qiqj exp
�stjrijj2g2

2st þ ðsþ tÞg2

 !

� exp
ig2tk � rij

2st þ ðsþ tÞg2 �
jkj2ð2t þ g2Þ

4ð2st þ ðsþ tÞg2Þ

 !
: ð14Þ

Inspired by the change of variables used by Reed et al. [12], we let
t0 ¼ tg2=ð2t þ g2Þ. After algebraic manipulation, we convert the
integral over t into the following integral over t0,
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This integral has the same form as that which results from the point
charge calculation of de Leeuw et al. [17] except that the upper limit
of integration in our Gaussian problem is g2=2 instead of infinity.
This shows that the summation of Gaussian charges is the natural
extension of the point charge result, which is returned by the
g!1 limit of Eq. (15). Now consider partitioning the integral over
t0 at some a2, with a2 < g2=2, where a will be the usual Ewald
screening parameter. For t0 > a2, we can invert the Jacobi transfor-
mation, computing that part of the integral in real space,
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The first term is identical to the reciprocal space term of a point
charge calculation. It is only in the second term, the real space term,
that the Gaussian system differs. The divergences that complicate
electrostatics of extended systems all appear in the k ¼ 0 reciprocal
space term. Since this term is not affected by the extension to Gaus-
sians, issues of conditional convergence will be identical to the
well-studied point charge problem. The regularised Coulomb en-
ergy is given by the s! 0 limit of U3DðsÞ. The s! 0 limit of the Fou-
rier-space term is provided by de Leeuw et al. [17], while the s! 0
limit of the real space term is trivial since expð�sjnj2Þ can be
brought outside the integral. Hence,
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where SðkÞ ¼
Pn

i¼1qi expðik � riÞ is the structure factor. This final
integral can be performed by treating the i ¼ j; n ¼ 0 term sepa-
rately and noting that the integral can be viewed as the difference
of an integral from a2 to infinity and another from g2=2 to infinity,
each of which can be evaluated as complementary error functions:
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where Upc
3D is the 3D Ewald energy for a point charge system. Exten-

sion to a mixed system of Gaussians with different widths is a simple
matter. The substitution t0 ¼ ðg2

1g2
2tÞ=ðg2

1g2
2 þ ðg2

1 þ g2
2ÞtÞ is used for

an interaction between a Gaussian with parameter g1 and another
with g2. This includes the interaction with point charges as the
g2 !1 limit. The sole effect of these different transformations is
to alter the upper limit of integration in Eq. (15), which in turn ad-
justs the parameter in the complementary error function of Eq. (18).

3. 2D Ewald summation with Gaussian charges

The 2D Ewald summation for Gaussian charges was reported by
Reed et al. [12]. Their derivation follows the approach of de Leeuw
and Perram in neglecting the potential subtleties of ordering the
summation [20]. Grzybowski et al. used convergence factors to
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explicitly show that the de Leeuw and Perram result corresponds
to a cylindrical sum [21]. In a manner completely analogous to
the 3D Ewald discussion of the previous section, the cylindrical
sum over Gaussian charges can be viewed as a natural extension
of the point charge problem. Integration over the two periodically
replicated directions is performed following the steps of Eqs. (10)–
(14). The non-periodic z direction does not introduce ambiguities
about summation order, so methods used by Reed et al. [12] are
utilised to give
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4ab
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where for notational convenience we have written q ¼ ðx; yÞ and
j ¼ 2p k

a ;
l
b

� 	
. Finally, the change of variables t0 ¼ g2t=ð2t þ g2Þ is ap-

plied. Several steps of algebra shows that this transformation maps
every term of the integrand onto the form of the associated term
that would arise from an Ewald sum over point charges:
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The only difference between the Gaussian and point charge systems
is again the upper limit of t0 integration, which is infinity for point
charges. This t0 integral can be partitioned at a2 yielding a reciprocal
space term which is identical to the point charge problem. Since the
divergences are contained in the shared reciprocal space terms, the
analysis of Grzybowski et al. of the divergences applies equally well
to our Gaussian problem [21]. The real space energy resulting from
partitioning the integral is

Ureal
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4ab

Z g2=2
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�1=2 X
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ij
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which, assuming a minimum image convention, is the same as the
3D Ewald real-space energy. Using the real space calculation of Eq.
(18),
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where Upc
2D is the 2D Ewald energy of point charges given by de Lee-

uw and Perram [20] or by the numerical quadrature approach of
Kawata and Mikami [22]. Eq. (22) is precisely the form recently ob-
tained by Vatamanu et al. using a real space decomposition of the
pairwise Gaussian interactions [15], but we have shown that this
form also correctly compensates for reciprocal space long-range
electrostatics.

In practice, a sufficiently large value of the screening parameter
a should be chosen to ensure that the minimum image convention
for the associated point charge problem is satisfied. Provided
g >

ffiffiffi
2
p

a, the integral in Eq. (20) can be partitioned and the com-
plementary error function terms shown in Eq. (22) will decay more
rapidly than the erfcðajrijj2Þ terms of the point charge sum. As such,
the approximation used by Vatamanu et al. naturally follow from
the fact that a was selected to enable the minimum image conven-
tion. In a mixed system with both point charges and very broad
Gaussian charges it is conceivable that a screening parameter
would be selected with g <

ffiffiffi
2
p

a. In this scenario the truncation
of the Gaussian sum at minimum images does not necessarily fol-
low from the fact that the point charge sums can be treated with
minimum images, but such a scenario does not lend itself to a real
space calculation. Rather, the integral of Eq. (20) would be com-
puted directly in reciprocal space (the broad Gaussians allowing
a rapid Fourier space summation with small truncation error).

It is notable that our result differs from Eq. (A30) in the work of
Reed et al. [12]. In their work the upper limit of integration in Eq.
(A11) is mistakenly set to infinity instead of g2=2. This corresponds
to treating the short range electrostatics as point charges rather
than Gaussians. In addition, a different partition is applied to the
integral over t0. Instead of partitioning at a2, the earlier work splits
the real space and reciprocal space calculations at b2, with
b ¼ gaðg2 þ 2a2Þ�1=2. Despite the different appearance, this does
not alter the energy because a and b are both parameters for con-
trolling convergence. The numerical values are chosen to optimise
the convergence, but provided the sums are fully converged, the
energy is independent of this partition. Furthermore, since the re-
ciprocal space term is identical for point charges as for Gaussians,
the numerically optimal screening parameter will be the same for
both systems.
4. Application to a simple test system

The simulation of metallic systems presents the challenge of
compensating for induced surface charge. Image charge or Green’s
functions approaches are generally useful, but on a microscopic le-
vel the details of the atomic structure make it difficult to specify
the corrugated geometry of the equipotential surface. To overcome
this challenge, Siepmann and Sprik [11] presented a model which
directly calculates the surface charge density by expressing it as
a superposition of Gaussian charges centred on each atom of the
metal. The Gaussian charge magnitudes are determined to equate
the electric potential experienced at the centre of each metal site,
thereby imposing the metallic constraint of continuum electrostat-
ics on a discrete lattice [11]. This removes the need to explicitly de-
scribe the shape of the equipotential surface. Instead, these atomic
effects are controlled by the size of the Gaussian charges, the single
parameter of the Siepmann/Sprik model. We applied Ewald sum-
mation of Gaussian charges to re-examine the importance of this
parameter, g, revealing that short range interactions between a
point charge and the metal appear particularly sensitive to the
parameterisation.

To highlight this sensitivity we chose to examine the textbook
example of an interaction between a conducting sphere and a point
charge. A grounded conducting sphere of radius 7.94 Å was mod-
eled with 2000 Gaussian charges of the form given by Eq. (1) cen-
tred along a golden section spiral so as to achieve approximately
equal spacing between sites [23]. A version of Eq. (18) including
interactions with the single point charge and with the so-called
tin foil boundary conditions [24] were applied to describe the Cou-
lomb energy. Periodic images were positioned far away from each
other by using a cubic box with side lengths 42.33 Å, and the Ewald
screening parameter was set to a ¼ 0:132 Å

�1
. Calculations were

performed on the periodic system since this form of the Coulomb
energy will be required for future work. To confirm that neighbour-
ing replicas do not bias the results, the calculations were repro-
duced with a wholly real space calculation of the finite system. A
single point charge with magnitude e was placed inside the sphere,



Figure 1. Induced charge distribution on a 7.94 Å radius sphere composed of 2000
Gaussian sites ðg ¼ 4:7 Å

�1Þ with a unit point charge (shown as a larger circle)
positioned 3.97 Å from the centre of the sphere. The colour coded charge
distribution is given in units of the point charge. The Gaussian sites are shown as
circles with radius g�1. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)
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Figure 3. An effective image sphere radius, calculated by fitting the asymptotic
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and the charge distribution on the conducting sphere was
computed using the conjugate gradient method to minimize the
Coulomb energy [12]. Figure 1 shows the induced charge distribu-
tion for a particular point charge position and choice of g. In this
case g ¼ 4:7 Å

�1
and the point charge is placed 3.97 Å from the

centre of the sphere.
The point charge was moved radially inside the sphere and the

charge distribution on the sphere was calculated for several values
of g. Since the average distance between sites was 0.63 Å, g was
varied between 0.95 and 9:45 Å

�1
, corresponding to Gaussian

spreads between 0.75 and 0.08 Å. In Figure 2 the computational re-
sults are compared with the standard analytic image charge solu-
tion for the energy of, and the radial force acting upon a point
charge in, a conducting sphere [8],

U ¼ �
q2

pointR

2ðR2 � r2Þ
; Fr̂ ¼ �

q2
pointRr

ðR2 � r2Þ2
; ð23Þ

where r is the displacement of the point charge from the centre of
the sphere and R is the radius of the sphere. The force exerted by
the metal on a point charge at long range converges to the contin-
uum result for all computed values of g. At short range, the choice of
g exerts considerable influence because it constrains the induced
charge density to be bound more or less tightly to the atomic sites.

An effective sphere radius can be defined by fitting the long-
range portion ðr < R=3Þ of Figure 2 to the continuum energy
expression, Eq. (23). Figure 3 summarises the g-dependence of this
effective radius, which equals the physical radius when g � 8 Å

�1
.

Equality of the physical and the effective long-range image planes
implies that the model conductor will behave precisely like a
spherical conductor at long range. This equivalence motivated
Siepmann and Sprik’s initial parameterisation, which has followed
through to subsequent works [12–15]. However, we note that our
model conductor is not intended to be a smooth sphere on the
atomic scale. Indeed, the corrugated equipotential is considered a
desirable aspect of the model, and so the metal’s capacitance can
be expected to deviate slightly from the capacitance of a perfect
sphere. As a result, it is not necessary for g to be tuned to a value
that forces perfect agreement with the results of a perfect contin-
uum sphere. What is essential is that the metal appears to behave
like a metal at distances for which the discrete nature of the sur-
face becomes insignificant. It is clear from Figure 2 that the force
on a long range point charge is insensitive to g. Figure 3 expresses
this insensitivity in a different form. The differences between effec-
tive and geometric image sphere radii are so small that they are
insignificant to a long-range point charge. A notable exception oc-
curs as g is increased towards the infinite limit, at which point the
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Gaussians become point charges with infinite self-energies. As g
increases, the effective sphere radius also increases without bound.
Therefore one must pass to longer and longer range before forces
will asymptotically approach the continuum limit, with g ¼ 1 fail-
ing to reproduce long-range electrostatics at any finite range. For
this reason, the numerical analysis was restricted to modest values
of g, but this restriction can be rationalised on physical grounds. A
metal’s electronic density is delocalized on the atomic scale, which
should be interpreted as the intersite distance, so large g can be
disregarded as inappropriate representations of delocalized charge.

We conclude that a point charge far from our model electrode
experiences a force which essentially acts like the ideal smooth
conductor at long range for a wide range of sufficiently delocalized
Gaussian spread. However, Figure 2 makes it clear that short-range
forces depend strongly on g, suggesting that the parameterisation
should be determined by the short-range behavior. In describing
the charge density as a superposition of Gaussians on each site, it
is implicitly assumed that a Gaussian is a reasonable approxima-
tion of the local electronic structure and that the dominant excita-
tions correspond to redistribution of delocalized charge along a
conductor. If the model is to be used to generate short-range inter-
actions with a metal surface, this assumption should be verified
and g must be fitted to experimental or computational studies of
the metal’s electronic structure. We envision determining an opti-
mal value of g from DFT calculations in much the same way that
the polarizabilities were recently fitted for an ionic liquid in con-
tact with a metallic surface [25].

5. Conclusions

The aim of this work was to shed light on the method of Ewald
summation applied to Gaussian charges. We have shown that the
extension from point charges to Gaussian charges is natural, even
with the inclusion of a spherical convergence factor. As a result,
the extensive analysis of divergences within periodically replicated
point charge systems may be applied when the charges are Gauss-
ian in nature. The extension was shown to remain valid for Ewald
summation with two periodically replicated directions. Finally, we
have considered the use of these Gaussian charge systems for sim-
ulation of metals. Unlike the Ewald screening parameter, a, we
note that the Gaussian charge parameter, g, is physically signifi-
cant. As g controls the representation of the metal’s electronic
structure, we suggest that future work will need to more carefully
parameterise the value in order to generate accurate short-range
forces.
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