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ABSTRACT: Thermodynamic uncertainty relations (TURs) relate precision to the
dissipation rate, yet the inequalities can be far from saturation. Indeed, in catenane molecular
motor simulations, we record precision far below the TUR limit. We further show that this
inefficiency can be anticipated by four physical parameters: the thermodynamic driving force,
fuel decomposition rate, coupling between fuel decomposition and motor motion, and rate of
undriven motor motion. The physical insights might assist in designing molecular motors in
the future.

Molecular motors generate directed motion, extracting
free energy from their environment and producing

entropy in the process.1 Biological motors like myosin,2

dynein,3 and ATP synthase4 are responsible for important
processes like muscle contraction, molecular transport, and
chemical fuel generation, respectively. Recent breakthroughs in
synthetic chemistry have also led to autonomous artificial
motors that are chemically fueled.5−11 With net flows of
energy, molecular motor systems are necessarily out of
equilibrium. Systems driven only weakly out of equilibrium
can be analyzed with linear response theory, but molecular
motors do not necessarily operate in such a regime. Limited
tools are available for studying systems far from equilibrium,
and the recent development of fluctuation theorems12−14 and
associated results have allowed for novel thermodynamic
analyses of these systems.15−17

A family of such results, known collectively as thermody-
namic uncertainty relations (TURs), governs the relationship
between fluctuations in a time-extensive current J and the total
dissipation Σ. TURs were first studied, postulated, and derived
in the context of Markov jump processes in the long-time
limit18−20 and have since been generalized21 to a wide variety
of domains, such as Markov chains,22 diffusions,23−27 and
quantum systems.28−30 The classical overdamped TUR can be
expressed in the form

J
J

kvar( ) 2
2

B

(1)

where kB is the Boltzmann constant, ⟨·⟩ is the mean, and var(·)
is the variance. A common biochemical situation is that the
dissipation comes from the net decomposition of Nrxn fuel
molecules, each feeling a thermodynamic driving force Δμ at
temperature T. In that no-load case, the dissipation associated

with the net reactions Σrxn = NrxnΔμ/T can be viewed as a
particular current of interest, allowing eq 1 to be translated into
a restriction on the stochastic fluctuations in the number of
fuel decomposition events:

N Nvar( )
2

rxn rxn
(2)

where β = 1/kBT. TURs set a fundamental limit on the
precision of fluctuating systems, so it is natural to characterize
a motor’s efficiency by how closely it saturates the
corresponding TUR.31 This measure of efficiency is meaningful
even when a motor spins with no load. In that case, the
thermodynamic efficiency, measured as work out per energy
input, necessarily vanishes simply because there is no work
with no load. By contrast, the efficiency we discuss measures
how effectively the motor generates directed motion, some-
thing that can occur even in the absence of the load. Much of
the literature surrounding TURs deals with relatively low-
dimensional models and systems. Here, we demonstrate how a
high-dimensional particle-based model of an artificial molec-
ular motor can be used in conjunction with molecular
dynamics simulations to generate a direct comparison against
the TUR and explain how it can be employed in studying
molecular motors. This effort complements current research
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on the optimal control of and performance trade-offs for
molecular motors.32−35

How efficiently a motor approaches the TUR limit is a
complicated function of a high-dimensional design space.
Depending on the interaction strengths between components
of the motor, the motor can range from a precise machine to a
dud, scenarios that we illustrate with molecular simulations of a
family of catenane motors. Our main results offer quantitative
measures of the degree of saturation of the TUR bound in
these catenane motors. While the large design space yields
motors with precisions varying over several orders of
magnitude, we can anticipate how close each motor will get
to the TUR bound by knowing just four physical properties:
the chemical potential driving the motor, the rate of fuel
decomposition, the coupling between fuel decomposition and
motor motion, and the rate of undriven motor motion. We
derive such a simplification using a minimal Markov model and
illustrate that the resulting expressions, eqs 7 and 10, are
instructive in explaining the performance of the more
complicated molecular dynamics simulations of catenane
motors. We further translate eq 10 into a biophysical context
to explain why biological motors can operate orders of
magnitude closer to the TUR bound than presently
demonstrated artificial ones. Understanding how closely
artificial molecular motors can saturate these fundamental
TUR bounds highlights inefficiencies in their design and
provides insight into how we might improve future artificial
motors.

■ MOLECULAR MOTOR SIMULATIONS
We use a classical particle-based model of a molecular motor36

inspired by the first synthetic, autonomous, chemically fueled
molecular motor.5 As shown in Figure 1a, the catenane motor
consists of two interlocked rings. The smaller shuttling ring
traverses the larger ring by diffusion. Both rings are composed
of particles that are held together by nearest-neighbor bonds.
The larger ring contains a number of motifs, each consisting of
a binding site (shown in orange) directly adjacent to a catalytic
site (shown in white). Binding sites act as potential energy
wells for the shuttling ring, whereas catalytic sites facilitate the
decomposition of fuel molecules present in the bulk.

The fuel is represented by a full tetrahedral cluster (FTC)
that consists of two components: an empty tetrahedral cluster
(ETC) and a central particle (C), which is kinetically trapped
within the ETC. Whereas the motor is confined to an inner
volume of the simulation box, the FTC, ETC, and C are free to
pass between both inner and outer volumes. The fuel
decomposes when the C escapes from the FTC to form the
ETC and C. After a fuel decomposition event, the C may
remain on the catalytic site for some time, resulting in steric
hindrance that blocks the motion of the shuttling ring. Further,
the presence of the shuttling ring at a binding site inhibits
catalysis at the proximal catalytic site, again by steric hindrance.
The resulting kinetic asymmetry couples the ring-and-fuel
system and creates an information ratchet that gates the natural
diffusion of the shuttling ring in a preferred direction.36−39

Modifying the spacing between motifs on the large ring can
even allow for control over the shuttling ring’s preferred
direction.39

The whole system undergoes Langevin dynamics inter-
spersed with periodic grand canonical Monte Carlo (GCMC)
moves in the outer volume that set up a nonequilibrium
chemical potential gradient. The chemical potentials of the
FTC, ETC, and C in the outer volume, μFTC, μETC, and μC
respectively, are fixed via GCMC moves,36,40,41 which act as
chemostats. By setting μFTC high and μETC and μC low, we
induce favorable conditions for fuel decomposition and
generate a chemical potential gradient

FTC ETC C= (3)

that tends to introduce the FTC into the system and
simultaneously remove the ETC and C from it. This
simulation setup allows us to perform numerical experiments
with varying motor configurations, pair potentials, chemical
potentials, frictions, and temperatures. Results from the array
of simulations are all plotted together in Figure 1 with the
color of the plot markers reflecting the fuel concentration and
the symbols representing motors with different characteristics,
as described further in the SI.

Figure 1. (a) The simulated motor model consisting of a green shuttling ring that diffuses around a larger ring and preferentially binds at orange
sites. The net decomposition of Nrxn full tetrahedral clusters (FTC, red and blue) into empty tetrahedral clusters (ETC, blue) and free particles (C,
red) couples to the motion of the shuttling ring and induces a time-integrated current J, which measures the net number of cycles in the clockwise
direction. The coupling between the current and fuel decomposition results from attractive energetic interactions between the FTC clusters and the
white binding sites, which catalyze fuel decomposition. By tuning the chemical potentials of the three species, μFTC, μETC, and μC, we impose a
nonequilibrium driving force Δμ = μFTC − μETC − μC via a grand canonical Monte Carlo procedure that tends to inject FTC into and remove ETC
and C from the system at temperature T.36 Plotted in (b) and (c) are comparisons of the data with the TUR limits eqs 1 and 2, respectively) for a
family of catenane motors with varying numbers of binding and catalytic sites, friction, and backbone rigidity, denoted with different symbols (see
Supporting Information (SI) Sec. I for details). We choose to express the x axis of each plot in terms of the typical dissipation ⟨Σ⟩ = ⟨Σrxn⟩ =
⟨Nrxn⟩Δμ/T. The color bar denotes the concentration of FTC molecules, which is controlled by the associated chemical potential.
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■ DISSIPATION
Each step in the simulation is microscopically reversible so that
the dissipation can be rigorously computed as the entropy
production in the reservoirs. Due to local detailed balance with
those reservoirs, the entropy produced during a single
trajectory x studied for an observation time tobs can
equivalently be measured by the statistical irreversibility of
the trajectory. From that perspective, the entropy production
associated with the trajectory, Σ(x), is expressed as the log-
ratio of the probability of observing x to its time-reversed
analogue x̃,42

k
P
P

x
x
x

( ) ln
( )
( )B=

(4)

An individual trajectory is stochastic because of random
thermal noise from the Langevin dynamics and the addition
and removal of the FTC, ETC, and C via GCMC moves.
These factors combine multiplicatively to form P(x) and P(x̃),
allowing Σ to be computed directly from simulations via eq 4.
That total entropy production can be decomposed into
components arising from the Langevin dynamics43,44 and the
chemostats. The decomposition, shown explicitly in the SI,
illustrates that the average entropy production can equivalently
be computed from the entropy production of the reaction
alone: ⟨Σ⟩ = ⟨Σrxn⟩ = ⟨Nrxn ⟩Δμ/T.

■ THE CURRENT AND ITS PRECISION
To analyze the TURs, we must compare this typical entropy
production to the fluctuations of time-integrated currents. Two
such currents are Nrxn and the physical current that counts the
net displacement of the shuttling ring around the large ring in
its preferred direction, a current we call J. Means and variances
of both currents are readily extracted by sampling simulated
trajectories. In the case of Nrxn this merely requires that one
count how many net FTC decompositions have occurred in a
given time tobs. For J, one counts the net number of large-ring
particles that the shuttling ring passes Δn in that same tobs.

Figures 1b and 1c show the precision of the currents for a
variety of model configurations and operating conditions and
how they compare to the TURs for J and Nrxn, eqs 1 and 2,
respectively. Both currents and their precisions depend
strongly on μFTC. In alignment with the governing TURs,
increasing the FTC concentration generally drives more
current and decreases its relative variance. However, for both
J and Nrxn, the magnitude of the precision is far from the TUR
bound�5 orders of magnitude for J and 2 for Nrxn�implying
stark inefficiency that we subsequently rationalize. Interest-
ingly, the precision of Nrxn appears to collapse onto a single
curve in Figure 1c, suggesting that the data are governed by
some TUR-like relationship between the mean and variance.

■ A MINIMAL MODEL OF A LOOSELY COUPLED
MOTOR

To pursue the idea that appropriately rescaled data would
collapse onto a TUR-like relationship, we introduce a minimal
Markov model for which we could analytically compute such a
rescaling. This minimal model should share the essential
structure of the simulated catenane motors. For example, the
simulations reveal a loosely coupled motor; only some of the
fuel decompositions actually result in the directed motion of
the shuttling ring. The loose coupling motivates us to
introduce a minimal Markov model that involves three distinct

events: fuel-coupled ring motion, fuel-decoupled ring motion,
and futile fuel reactions. In terms of this simple model, we are
able to quantitatively reproduce the features discussed in
Figure 1, which allows us to identify the factors that contribute
to the looseness of the bounds. The model also enables
straightforward analyses of design strategies for altering the
motor to tighten these bounds.

The Markov model, illustrated in Figure 2, consists of a
shuttling ring that hops along an infinite track with binding

sites separated by a distance l. This infinite track can be
thought of as the result of unfurling the large ring of the
catenane into a linear track with periodic replicas. We focus on
the coupling between the motion of the shuttling ring and the
fuel transformation events, whereby fuel transformation refers
both to the decomposition of the FTC to form the waste
products ETC and C and to the reconstitution of the FTC
from the ETC and C. At each moment in time, one of three
dynamical events can take place: fuel transformation coupled
to biased motion with rates rbias± , futile fuel transformation not
coupled to motion with rates rfut± , and unbiased motion not
coupled to fuel transformation with rate r0. The superscript +
denotes decomposition of fuel, whereas the superscript −
denotes reconstitution of fuel. Fuel transformation is coupled
to biased motion in the sense that the decomposition of one
unit of fuel causes the ring to move one hop in the favored
direction, cf. Figure 2. Therefore, the ring dynamics are
modeled as a superposition of a symmetric random walker
perfectly decoupled from fuel dynamics and an asymmetric
random walk perfectly coupled to fuel dynamics. The degree of
coupling is quantified as the proportion of the fuel trans-
formation coupled to biased motion.

The rates of the Markov model can be recast in terms of
parameters with clear physical meaning: ζ, the combined rate
of unbiased movement events; λ, the combined rate of fuel
transformation events; η, the proportion of fuel transformation
coupled to biased motion; and Δμ, the change in free energy
associated with the decomposition of a single FTC species in
solution, as calculated for the particle simulations in the SI.45

For thermodynamic consistency, each forward move must have

Figure 2. Schematic of a minimal model of a loosely coupled motor.
Each state in the model represents a binding site on the large ring
separated by a distance l. Movement between these states corresponds
to the shuttling ring hopping between binding sites. There are three
different types of dynamic events that can occur: biased motion with
rates rbias± , unbiased motion with rate r0, and futile fuel decomposition
with rates rfut± . As illustrated, certain events are coupled to the
decomposition or reconstitution of fuel, and others are not. Explicit
expressions for the rates of each event are provided in the main text.
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a reverse counterpart. The ratio of rates for these pairs of
moves is proportional to the exponential of the free energetic
difference that drives the bias. Because the ring has degenerate
binding sites, microscopic reversibility requires r+ = r−

exp(βΔμ) . Furthermore, by definition, the rate of biased
motion must be ηλ, and that for futile fuel transformation must
be (1−η)λ. These constraints uniquely specify the rates rbias+ =
rbias− eβΔμ = ηλ/(1 + e−βΔμ), rfut+ = rfut− eβΔμ = (1 − η)λ/(1 + e−βΔμ),
and r0 = ζ/2. The particle simulation operates under
conditions in which βΔμ ≫ 1 and hence r+ ≫ r−.

■ CURRENT FLUCTUATIONS IN THE MINIMAL
MODEL

We let N0
+, N0

−, Nfut
+ , Nfut

− , Nbias
+ , and Nbias

− be the number of
forward (+) and reverse (−) moves accrued in time tobs due,
respectively, to unbiased motion, futile fuel decomposition,
and fuel decomposition coupled to biased motion. With the
Markovian assumption, these variables are all Poisson
distributed, with parameters equal to the corresponding rates
multiplied by tobs. Both the shuttling-ring and fuel-decom-
position currents can be expressed in terms of those Poisson
variables: J = (Nbias

+ − Nbias
− + N0

+ − N0
−)l and Nrxn = Nbias

+ −
Nbias

− + Nfut
+ − Nfut

− , where l is the length scale separating the
binding sites in Figure 2. Making use of the fact that a Poisson-
distributed N with the parameter r·tobs has ⟨N⟩ = var(N) = r·
tobs, the mean and variance of J and Nrxn in the Markov model
can be calculated. For Nrxn, that calculation yields

N t tanh
2rxn obs

i
k
jjj y

{
zzz=

(5)

N tvar( )rxn obs= (6)

which can be rearranged into

N f Nvar( )
2

2
rxn rxn

i
k
jjj y

{
zzz =

(7)

an equality resembling the TUR inequality, eq 2. Here, the
saturation of the TUR inequality is determined by the scaling
factor f(x) = tanh(x)/x, which tends to 1 as βΔμ vanishes. For
the Markov model of Figure 2, we see that the tightness of the

Nrxn fluctuations relative to its TUR bound is exclusively
regulated by βΔμ, the dimensionless free energy of
decomposition.

Repeating the Poisson analysis for J gives the mean and
variance

J t ltanh
2 obs

i
k
jjj y

{
zzz=

(8)

J t lvar( ) ( ) obs
2= + (9)

Rearrangement yields

J
J

f g
kvar( )

2
( , , )

2
2

Bi
k
jjj y

{
zzz =

(10)

an equality resembling the current TUR inequality, eq 1. Now,
the saturation of the TUR for J is determined by f(βΔμ/2) and
g(η,ζ,λ) = η2λ/(ηλ + ζ) . The same factor f(βΔμ/2) that
appeared in eq 7 reflects that the minimal model’s saturation of
the TUR for fuel decomposition is necessary but insufficient to
also saturate the TUR for J.

The TUR equalities, eqs 7 and 10, only rigorously apply to
the minimal Markov model. It is not obvious that they would
provide direct insight into the fluctuations in the more
complicated simulations. The minimal Markov model imagines
independently varying ζ, η, λ, and Δμ, but modifying motor
interactions in the molecular dynamics simulations simulta-
neously changes all four parameters. Remarkably, we show that
for a broad array of motor designs, both eqs 7 and 10 are able
to describe the simulation fluctuations if the Markov model
parameters ζ, η, and λ are replaced by effective values ζeff, ηeff,
and λeff extracted from the simulations, as described in the SI.

To the extent that the minimal Markov model captures the
simulated fluctuations, eqs 7 and 10 therefore imply that the
TUR inequalities would be converted into equalities if we
rescaled variances:

J J f gvar( ) var( )
2

( , , )eff eff eff
i
k
jjj y

{
zzz (11)

Figure 3. Plots showing the rescaling of eqs 11 and 12 applied to the simulated J and Nrxn current fluctuations from molecular dynamics simulations
of catenane motors. That the rescaled fluctuations lie on the curves of the TUR bounds indicates that the analytical scaling factors quantify how far
the fluctuations are from the TUR bounds.
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N N fvar( ) var( )
2rxn rxn

i
k
jjj y

{
zzz (12)

Figure 3 shows the result of applying that rescaling on the
simulation data. The rescaled fluctuations are effectively
mapped onto the TUR curves, implying that the rescaling
factors f and g are measures of how close the fluctuations get to
saturating the TUR inequalities. Crucially, because these f and
g factors are expressed in terms of physically interpretable
parameters, it allows us to address how those physical
quantities (the chemical potential driving the motor, the rate
of fuel decomposition, the coupling between fuel decom-
position and motor motion, and the rate of undriven motor
motion) impact the degree of TUR saturation.

■ DISCUSSION
The TUR has attracted great interest because the inequality
connecting motor precision with thermodynamics is generic,
but the generality of the result can obscure the fact that far-
from-equilibrium machines can operate far from the TUR
bound. Indeed, in our simulations of an artificial catenane
motor, we have shown that the fluctuations in current deviate
from the TUR bound by 5−6 orders of magnitude. Even when
the TUR is loose, we have here demonstrated that we can
closely approximate the fluctuations in terms of the TUR via
the rescaling of eqs 11 and 12. This connection allows us to
attribute the observed deviations from the TUR to both the
large free energy difference driving fuel decomposition (βΔμ
ranged from 74 to 118 for our numerical experiments) and the
low current from lack of coupling between fuel decomposition
and ring movement (ηeff ranged from 0 to 0.11). Both Δμ and
coupling are clearly important factors in considering motor
performance,46,47 and f(βΔμ/2) and g(ηeff, ηeff, λeff) now
quantitatively highlight their impact on current fluctuations in
these catenane motors.

From the rescaling, we see that minimizing the deviation
from the TUR requires a combination of tight coupling and
low entropy production from fuel decomposition. TUR
saturation simultaneously demands perfect coupling (ηeff =
1), a vanishing driving force (Δμ → 0), and no unbiased
movement (ζ = 0). It is suggestive to compare with biophysical
motors driven by ATP hydrolysis, which for physiological
conditions means Δμ ≈ 20kBT and f(βΔμ/2) ≈ 0.1. That Δμ
places a limit on the maximal achievable precision, but unlike
our catenane simulations, the g term will have a limited role in
most biophysical situations. The difference is that the
biophysical motors typically benefit from tight mechanical
coupling48 between fuel decomposition and mechanical
motion, so that η ≈ 1, ζ ≪1, and g(ηeff, ζeff, λeff) ≈ 1.
Without realizing similar tight coupling in synthetic motors, it
will be hard to engineer them to reach the precision of their
biophysical counterparts.
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