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Proof of the finite-time thermodynamic uncertainty relation for steady-state currents
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The thermodynamic uncertainty relation offers a universal energetic constraint on the relative magnitude of
current fluctuations in nonequilibrium steady states. However, it has only been derived for long observation times.
Here, we prove a recently conjectured finite-time thermodynamic uncertainty relation for steady-state current
fluctuations. Our proof is based on a quadratic bound to the large deviation rate function for currents in the limit
of a large ensemble of many copies.
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Introduction. The thermodynamic uncertainty relation of-
fers a fundamental bound on the current fluctuations in
nonequilibrium steady states [1–4]. Roughly speaking, it states
that small fluctuations come at the cost of more dissipation.
This relation, and its cousins [5,6], allows one to constrain
thermodynamic forces in enzymatic catalysis [7,8], bound the
power fluctuations in mesoscopic machines [9,10], and limit
the energetic cost of sensing [11], and it has been adapted to
Brownian motion [4,12], nonequilibrium self-assembly [13],
active matter [14], equilibrium order parameter fluctuations
[15], activity fluctuations [16], and first-passage-time fluctua-
tions [16,17]. Its derivation relies on bounding the likelihood
of rare current fluctuations in the long-time limit, using the
tools of large deviation theory [18]. As such, the predictions
are proved to be valid only for long observation times [3].

Recently, though, Pietzonka et al. conjectured a steady-
state-currents uncertainty relation valid for finite observation
times, based on extensive numerical and experimental evi-
dence [19]. This finite-time uncertainty relation stipulates that
in the steady state any current JT integrated up to time T will
have a variance Var(JT ) and mean 〈JT 〉 constrained by the total
steady-state entropy production 〈�T 〉 accumulated by T as

Var(JT )/〈JT 〉2 � 2/〈�T 〉, (1)

in units where Boltzmann’s constant is set to kB = 1. For
the special case of the fluctuating entropy production �T , the
uncertainty relation simplifies to

Var(�T ) � 2〈�T 〉, (2)

which has been derived directly from the structure of entropy-
production fluctuations for nonequilibrium systems modeled
as diffusion processes [20]. In this Rapid Communication, we
provide a proof of Eq. (1) using the tools of large deviation
theory in a manner akin to the proof of the original long-
time uncertainty relation [3]. This proof puts the finite-time
uncertainty relation on firm footing, justifying its use in
analyzing even short-time experimental data.

Setup. We have in mind a nonequilibrium system with
states x = 1, . . . ,M . Transitions between states, say from z

to y, are modeled as a continuous-time Markov jump process
with rates ryz. We assume that the matrix of transition rates is
irreducible, so that there is a unique steady-state distribution
πy with steady-state current jπ

yz = ryzπz − rzyπy . In addition,
we assume that the transition rates are thermodynamically
consistent, so that every ratio of transition rates can be

related to a thermodynamic force Fyz = ln(ryzπz/rzyπy),
which measures the total entropy production—environmental
entropy flow and change in system Shannon entropy—along
that transition [21].

Now, as we track a stochastic realization of our system
evolving over a finite time interval t ∈ [0,T ), x(t), there will
be a fluctuating instantaneous current counting every time tk
the system jumps:

jyz(t) =
∑

k

δ(t − tk)
(
δx(t+k ),yδx(t−k ),z − δx(t+k ),zδx(t−k ),y

)
, (3)

with x(t±k ) being the state of the system just before and after
a jump. Our interest, though, is in integrated generalized
currents, which are obtained by weighing each mesoscopic
jump by a factor dyz(t) = −dzy(t) and summing them up:

JT =
∫ T

0
ds

∑
y<z

dyz(s)jyz(s). (4)

For example, the entropy production is a generalized current
with dyz = Fyz,

�T =
∫ T

0
ds

∑
y<z

Fyzjyz(s), (5)

whose steady-state average

〈�T 〉 = T
∑
y<z

Fyzj
π
yz ≡ T �π (6)

characterizes the irreversibility of the nonequilibrium steady
state. Our goal now is to constrain the fluctuations in JT by
bounding its large deviation rate function using 〈�T 〉 = T �π ,
which will lead to (1).

Large deviations for large ensembles. Imagine now not just
one instance of our system hopping among its states, but an
ensemble of N � 1 independent copies—labeled xα(t), α =
1, . . . ,N—with initial conditions sampled from the steady-
state distribution π . Then in any given moment we could obtain
an empirical estimate of the density to be in mesostate y at time
t by measuring the instantaneous fraction of copies in state y:

ρy(t) = 1

N

N∑
α=1

δxα (t),y . (7)
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We could additionally estimate the current by counting the
total net number of jumps along any link as

φyz(t) = 1

N

N∑
α=1

jα
yz(t), (8)

with jα
yz(t) the instantaneous current of copy α [cf. (3)]. Indeed,

the law of the large numbers guarantees that both empirical
measures converge to their expected values as N → ∞.
However, we can also quantify their fluctuations through a
large deviation principle. As demonstrated in Ref. [22], the
probability to see a fluctuation is exponentially suppressed for
large N as

P[ρ(t),φ(t)] 	 e−NI [ρ(t),φ(t)], (9)

where 	 denotes asymptotic logarithmic equivalence [18], and
the large deviation rate function is

I [ρ(t),φ(t)] =
∫ T

0
ds I(ρ(s),φ(s)) − S(ρ(0)||π ). (10)

The second term is the relative entropy between the initial
fluctuating density ρ(0) and the steady state π , S(ρ(0)||π ) =∑

x ρx(0) ln (ρx(0)/πx). The first term can be put in the form
[23,24]

I(ρ(t),φ(t)) =
∑
y<z

�
(
φyz(t),j

ρ
yz(t),a

ρ
yz(t)

)
(11)

with

�(j,j̄ ,a) = j

(
arcsinh

j

a
− arcsinh

j̄

a

)

− (
√

a2 + j 2 −
√

a2 + j̄ 2 ), (12)

j
ρ
yz(t) = ryzρz(t) − rzyρy(t) the expected current for density

ρ, and a
ρ
yz(t) = 2

√
ρy(t)ρz(t)ryzrzy . The expression for I only

applies for fluctuations that conserve probability, ρ̇y(t) =∑
z 
=y φyz(t) with a normalized density

∑
y ρy(t) = 1; other-

wise, I is infinity.
Within this framework, the fluctuations in the generalized

current are simply due to the sum over the fluctuations of each
member:

	d =
N∑

α=1

(∫ T

0
ds

∑
y<z

dyz(s)jα
yz(s)

)
(13)

= N

∫ T

0
ds

∑
y<z

dyz(s)φyz(s) ≡ Nφd. (14)

Importantly, the large-N scaling of the cumulants of 	d are
identical to the cumulants of our generalized current JT [cf.
(4)] of interest,

lim
N→∞

1

N
Var(	d) = Var(JT )

lim
N→∞

1

N
〈	d〉 = 〈JT 〉,

(15)

since our ensemble of copies are independent and identi-
cally distributed. Furthermore, they are encoded in the large
deviation rate function I (φd) for the generalized current.

Thus, by bounding I (φd), as we now do, we constrain the
generalized-current fluctuations.

Bounding the large deviation rate function. Remarkably,
I in (11) has the exact same functional form as the level-2.5
large deviation rate function for long-time-averaged empirical
density and currents [23–25]. As a consequence, we can
almost directly import the proof used to derive the long-time
thermodynamic uncertainty relation to this situation. As such
we proceed in two steps [3]: First, we bound I, and then
exploit the large-deviation contraction principle to obtain an
inequality for the rate function I (φd).

As shown in Refs. [3,4], I satisfies a quadratic inequality,
which in this situation reads

I [ρ(t),φ(t)] �
∫ T

0
ds

∑
y<z

[φyz(s) − j
ρ
yz(s)]2

4
[
j

ρ
yz(s)

]2 σρ
yz(s)

− S(ρ(0)||π ), (16)

where σ
ρ
yz(s) = j

ρ
yz(s) ln[ryzρz(s)/rzyρy(s)] is the expected

entropy production along jump z → y if the density were ρ.
The next step is to contract down to the large deviation rate

function for generalized current. Namely, we can obtain the
large deviation function for the generalized current through
the minimization [18]:

I (φd) = inf
ρ(t),φ(t)

I [ρ(t),φ(t)], (17)

where the minimization is constrained by φd = ∫ T

0 ds∑
y<z dyz(s)φyz(s), the conservation of probability ρ̇y(t) =∑
z 
=y φyz(t), and normalization

∑
y ρy(t) = 1. However, an

upper bound to such a minimization can be obtained by
choosing any pair of ρ and φ consistent with the constraints.
We choose the time-independent pair

ρy(t) = πy, φyz(t) = φd

〈JT 〉j
π
yz. (18)

Substituting into (17), while exploiting (16), we obtain the
quadratic bound

I (φd) � (φd − 〈JT 〉)2

4〈JT 〉2

∫ T

0
ds

∑
y<z

σπ
yz (19)

= (φd − 〈JT 〉)2

4〈JT 〉2
〈�T 〉 (20)

in terms of the time-integrated steady-state entropy production
〈�T 〉 = T �π = T

∑
y<z σπ

yz.
The finite-time uncertainty relation (1) now follows readily,

by observing that the quadratic bound is zero at the typical
value, I (〈JT 〉) = 0, and that the second derivative of I (φd) at
its minimum encodes the large-N scaling of the variance:

lim
N→∞

1

N
Var(	d) = 1

I ′′(〈JT 〉) � 2〈JT 〉2/〈�T 〉, (21)

by (20). Combining this inequality with the independent-
identically-distributed nature of the copies (15) leads to the
thermodynamic uncertainty relation in (1).

Discussion. Remarkably, the finite-time uncertainty rela-
tion can be derived in almost the exact same manner as
the long-time uncertainty relation using a large deviation
theory for an ensemble of many copies. Consequently, this
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finite-time uncertainty relation is expected to also hold for
diffusion processes, since the large deviation function for
diffusions has a quadratic structure identical to (16) [4,26].
Similarly, we expect that tighter-than-quadratic bounds [5,7]
will also hold for finite times. Extending these constructions
to an uncertainty relation for finite-time first-passage-time

fluctuations would be an interesting and useful extension (cf.
[17]). However, an extension to a discrete-time process appears
untenable [27].
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[26] C. Maes, K. Netočný, and B. Wynants, Phys. A (Amsterdam,

Neth.) 387, 2675 (2008).
[27] N. Shiraishi, arXiv:1706.00892.

020103-3

https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
http://arxiv.org/abs/arXiv:1705.07412
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/2016/12/124004
http://arxiv.org/abs/arXiv:1705.05817
https://doi.org/10.1103/PhysRevE.92.032127
https://doi.org/10.1103/PhysRevE.92.032127
https://doi.org/10.1103/PhysRevE.92.032127
https://doi.org/10.1103/PhysRevE.92.032127
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1103/PhysRevE.94.030602
https://doi.org/10.1103/PhysRevE.94.030602
https://doi.org/10.1103/PhysRevE.94.030602
https://doi.org/10.1103/PhysRevE.94.030602
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.95.032134
http://arxiv.org/abs/arXiv:1706.09027
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
http://arxiv.org/abs/arXiv:1704.04061
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1016/j.physa.2008.01.097
https://doi.org/10.1016/j.physa.2008.01.097
https://doi.org/10.1016/j.physa.2008.01.097
https://doi.org/10.1016/j.physa.2008.01.097
http://arxiv.org/abs/arXiv:1706.00892



