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Current inversion in a periodically driven two-dimensional Brownian ratchet
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It is well known that Brownian ratchets can exhibit current reversals, wherein the sign of the current switches
as a function of the driving frequency. We introduce a spatial discretization of such a two-dimensional Brownian
ratchet to enable spectral methods that efficiently compute those currents. These discrete-space models provide a
convenient way to study the Markovian dynamics conditioned upon generating particular values of the currents.
By studying such conditioned processes, we demonstrate that low-frequency negative values of current arise
from typical events and high-frequency positive values of current arises from rare events. We demonstrate how
these observations can inform the sculpting of time-dependent potential landscapes with a specific frequency
response.
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I. INTRODUCTION

Brownian ratchets, or stochastic pumps, are spatially pe-
riodic, nonequilibrium systems that harness stochastic fluc-
tuations to generate currents and perform useful work [1–3].
Such ratchets have served as models for cellular motion [4,5],
motor proteins such as myosin, dynein, and kinesin [6–17],
DNA-bound proteins [18], molecular pumps [19–21], and
artificial molecular motors [22–28]. That random noise can
be rectified into work away from equilibrium—the ratchet
effect [1]—is remarkable in light of equilibrium results to
the contrary: Brillouin’s paradox [29,30], the Smoluchowski-
Feynman ratchet [31,32], and Parrondo’s games [33] in the
respective contexts of circuits, mechanics, and game theory.

Theoretical analyses of one-dimensional, single-particle
transport have been immensely productive at revealing the
essential ratcheting mechanisms that enable rectification
[1,8,9,34–39]. One of the more nontrivial features of such
ratchets is that the current can be remarkably sensitive to
specific tunable parameters, leading to current reversals: past
certain critical values, it is possible for the current to switch
sign. This type of phenomenon has largely appeared in the
contexts of deterministic inertial ratchets [40–42], supercon-
ducting vortex ratchets [43,44], and even quantum ratchets
[45–47]. Brownian ratchets have also revealed current rever-
sals in response to variations of parameters such as the driving
frequency [48–51], the noise [34,36,52–54], the shape of the
energy landscape [55], and the particle-particle interaction
strength [56]. Sometimes even multiple inversions have been
reported [47,57–59].

The goal of this paper is to elucidate the origin of a driving
frequency-induced current reversal via the classical stochastic
dynamics of a single particle. That this phenomenon occurs
can be traced back to the profoundly nonequilibrium nature
of the dynamics, which relaxes into a time-periodic steady
state rather than a thermal equilibrium. The current-generating
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cycles of this steady state require escape events that help the
system overcome energetic barriers [8,9,36], and the escape
mechanism that kinetically dominates depends on the driving
frequency [35].

Though analytical studies of one-dimensional ratchets have
illuminated the basic theoretical picture, escape over energy
barriers can depend on dimensionality. Even when current is
measured along a single dimension, the particles themselves
can often move in multiple dimensions [60–63]. Inspired
by their experimental measurements of currents in electron
ratchets [64–66], Kedem et al. have begun addressing the
importance of dimensionality via classical simulations involv-
ing driven, damped Langevin dynamics on a two-dimensional
transport layer [67]. These studies highlighted that adding a
second degree of freedom allows for a symmetry-breaking
mechanism inaccessible to one-dimensional ratchets, motivat-
ing further investigation beyond one-dimensional toy models.
Using an ensemble of simulated Langevin trajectories to
analyze behavior very close to the current reversal, however,
can be numerically challenging. Because the magnitude of the
current is necessarily small near an inversion, detecting signal
from noise becomes particularly costly.

In this work, we set out to develop a two-dimensional
lattice model that would bypass continuous-space, discrete-
time Langevin simulation. This lattice model, which reduces
to overdamped Langevin dynamics in the continuum limit,
replaces trajectory simulations with spectral calculations, ob-
viating the noise and expense of sampling. We use this
model to probe the dependence of the ratchet current on
the driving frequency, allowing us to identify characteris-
tic trajectories for the high- and low-frequency regimes as
well as the crossover between classes of trajectories at the
current-reversal frequency. Further, we provide a qualitative
explanation for trends in the ratchet current as the driving
frequency increases and identify the impact of the potential
on various aspects of such trends. We envision that such
numerical calculations could help sculpt spatiotemporal driv-
ing protocols to generate ratchets with a targeted dynamical
response.
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(a) (b)

FIG. 1. Schematic of the ratchet. (a) In accordance with Eqs. (1)
and (2), the top peach tile is grounded, while the bottom red tile
is subject to a time-dependent electrostatic potential. Charges are
mobile within the beige transport layer. When averaged over a
temporal period, the charge can be transported along the periodically
replicated x direction. Because motion in the y direction cancels
out on average, it suffices to study motion projected into the two-
dimensional cross section outlined by the dashed black rectangle.
(b) Example of the spatial discretization scheme used to analyze
dynamics in that two-dimensional cross section, showing probability
densities (shaded circles) and currents (arrows) on a 20 × 21 grid.

II. METHODS

A. Experimental system and model

Following Kedem et al. [64,65], we study classical trans-
port in a two-dimensional cross section of a three-dimensional
device, as depicted in Fig. 1. The device is constructed so
that the electrostatic potential along the top and bottom of the
device can be controlled in both space and time. In particular,
the top surface is grounded and the potential on the bottom
surface tuned using metal finger electrodes beneath the trans-
port layer. These electrodes are periodically spaced along the x
direction and run parallel to the y axis. We assume an infinitely
long device in the y direction, thereby allowing us to neglect
edge effects. Since the translational symmetry along y renders
irrelevant any diffusive motion parallel to the length of the
electrodes, motion can be projected solely onto the xz plane.
By charging and discharging the electrodes, a spatiotemporal
electrostatic potential U (x, z = 0, t ) can be imposed along the
bottom surface of the plane. We model the electrode array by
considering a single electrode and applying periodic boundary
conditions along the x direction, the direction of electronic
transport.

The electrostatic potential throughout the transport layer
follows by solving Laplace’s equation ∇2U = 0 subject to pe-
riodic boundary conditions in the x direction and the boundary
conditions

U (x, z = zmax, t ) = 0 (1)

and

U (x, z = 0, t ) = X (x)T (t ) (2)

along the top (z = zmax) and bottom (z = 0) surfaces, respec-
tively. In Eq. (2), T (t ) is a function periodic in time with
period τ , while X (x) is periodic in space. We specialize to the
case that T (t ) is an odd, periodic square wave with amplitude
Vmax,

T (t ) =
{

Vmax, 0 � t < τ
2−Vmax,

τ
2 � t < τ.

(3)

Following the setup of [67], we consider the spatial potential

X (x) = a1 + a2

2
+ a1

2
sin

(
2πx

xmax

)
+ a2

2
sin

(
4πx

xmax

)
, (4)

where xmax is the spacing between the periodic metal elec-
trodes and a1 and a2 parametrize the applied potential. For
ease of comparison, we use the same numerical parameters
as [67]: a1 = 1, a2 = 0.25, xmax = zmax = 1 μm, and Vmax =
0.6 V. Solving the boundary value problem by separation of
variables yields the exact potential,

U (x, z, t ) = T (t ) ×
[

a1 + a2

2

(
1 − z

zmax

)

+
2∑

n=1

an

2

sin(knx) sinh(kn(zmax − z))

sinh(knzmax)

]
, (5)

where kn = 2nπ/xmax. Given the temporal square-wave drive,
the potential experienced by a carrier thus periodically
switches between the two landscapes plotted in Fig. 2.

As we will see, this potential supports a nonzero current,
even though intuition from one-dimensional ratchets might
lead one to think currents would vanish due to symmetry.
Indeed, if transport were constrained to a single dimension
and driven by the potential we apply along the z = 0 bound-
ary condition, U (x, t ) = X (x)T (t ), it is well established that
no current would be generated [1,37,68,69]. In this case,
whatever current moves along the positive-x direction at time
t would be exactly counteracted by current moving in the
negative-x direction at time τ − t , where τ is the period of
T (t ). However, when the carriers are allowed to move along
the z dimension as well, the linear tilt (1 − z/zmax)(a1 + a2)/2
of Eq. (5) now induces cycling along the second dimension z.
This cycling in z ensures that current along the x direction
generated at an early time t in the driving period is not exactly
canceled out by the countervailing current at time τ − t [67].
Consequently, although current is symmetry forbidden in one
dimension, it is allowed in the two-dimensional transport
layer.

B. Discretization in space and time

Overdamped dynamics on the potential landscape can be
described both in Langevin form,

ẋ = μf (x, t ) + ξ(t ), 〈ξi(t )ξ j (t
′)〉 = 2Dδi jδ(t − t ′), (6)

and in Fokker-Planck form,

∂ρ(x, t )

∂t
= −μ∇ · [f (x, t )ρ(x, t )] + D∇2ρ(x, t ), (7)

where x = [x z], ρ is the probability density, μ the mobility,
D the diffusion constant, ξ(t ) a random Gaussian noise, and
f (x, t ) a deterministic force, given in our case by −∇U . The
Langevin form is naturally discretized in time as

xi+1 = xi + μ�t f (xi ) +
√

2D�t ηi, (8)

where �t is a discrete time step, xi ≡ x(i�t ), and ηi ∼
N (0, 1) is a random vector drawn from a unit normal
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FIG. 2. The electrostatic potential landscape U flips between two landscapes: (a) one at times 0 � t < τ/2 and (b) the other at times
τ/2 � t < τ .

distribution. Numerical propagation of the overdamped
Langevin equation given a specific noise process {η} generates
a single trajectory. Sampling N independent trajectories pro-
duces an estimate of the horizontal current j̄x with uncertainty
in the estimated value decaying, in accordance with the central
limit theorem, as N−1/2. This approach formed the basis for
previous numerical studies of this two-dimensional ratchet
[67,70].

Alternatively, one may coarse grain in space and model the
dynamics as a nearest-neighbor Markov jump process on a
grid of discrete spatial configurations. Such a process is fully
characterized by the master equation

∂p
∂t

= Wp, (9)

where W is the rate matrix whose elements are the transition
rates between each pair of lattice sites, and p is a vector whose
ith component gives the probability that the ith lattice site
is occupied. The steady-state solution of the master equation
is denoted π, which satisfies Wπ = 0. In two-dimensional
space, the rate matrix W may be constructed to ensure that
the continuum Fokker-Planck description is obtained in the
limit that the grid spacing h tends to 0 [71–73]. In particular,
we require that the first two moments of the rate matrix have
the correct drift and diffusion:

μf (x, t ) =
∑

x′
(x′ − x)Wx→x′ (t ; h), (10)

2DI =
∑

x′
(x′ − x) ⊗ (x′ − x)Wx→x′ (t ; h), (11)

where I denotes the identity matrix and Wx→x′ (t ; h) is the
time-dependent transition rate from x to x′ as parametrized
by h. These two tensor equations decouple into a set of four
scalar equations, from which the transition rates right, left, up,
and down follow as

W→ = +μ f1(x, t )

2h
+ D

h2
,

W← = −μ f1(x, t )

2h
+ D

h2
,

W↑ = +μ f2(x, t )

2h
+ D

h2
,

W↓ = −μ f2(x, t )

2h
+ D

h2
, (12)

with f = [ f1 f2] [72]. The same grid spacing h is used along
both the x and z directions, though that choice may eas-
ily be relaxed. In accordance with [65], we choose μ to
be 0.005 cm2 V−1 s−1, from which the diffusion constant of
12.64 μm2 ms−1 can be obtained via the Einstein relation D =
μkBT/|q|, where T is the system temperature, kB the Boltz-
mann constant, and q the electron charge. Unless otherwise
specified, single particles are allowed to hop on a 100 × 101
lattice with a grid spacing h of 10 nm [74].

To ensure convergence of either the continuous-space
Langevin approach or discrete-space jump process, the
time step �t or the grid spacing h must be made suf-
ficiently small. Appendix A addresses how fine of dis-
cretization is required as a function of both D and Vmax.
There, it is shown that as Vmax increases, discretizing in
time becomes advantageous, but when D increases, it be-
comes preferable to discretize in space. Crucially, when
Vmax is sufficiently small that spatial calculations are prac-
tical, currents can be computed using spectral methods that
do not suffer from the noise of trajectory sampling. In
the next section, we describe those spectral methods in
detail.

C. Currents from spectral calculations

The starting point for the spectral calculations is the time-
dependent rate matrix W(t ), with rates given by Eq. (12). W(t )
is a sparse N × N matrix. Our temporal square wave driving
T (t ) results in periodic toggling between one set of rates, W1,
and another, W2, each for duration τ/2; that is,

W(t ) =
{

W1, 0 � t < τ/2
W2, τ/2 � t < τ.

(13)

General forms of W(t ) for arbitrary time-dependent potentials
could similarly be developed as a limit of piecewise-constant
rate matrices.
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The temporal evolution of the steady-state state vector
π(t ), whose ith component gives the probability that the ith
lattice site is occupied at time t , is readily obtained from W(t ).
Starting from t = 0, the state vector after one period is

π(τ ) = Tπ(0) ≡ eτW2/2eτW1/2π(0), (14)

where T is the full-period transition matrix for the system.
After n periods, π(nτ ) is given by the top right eigenvector of
T. All other eigenvectors correspond to smaller eigenvalues
and hence to transient phenomena irrelevant in the steady
state. When the elements of W1 and W2 have sufficiently
small magnitudes that the matrices may be exponentiated
numerically, T is readily computed and its largest eigenvalue
obtained via the Arnoldi or power iteration methods. As
stated, multiplication by T only yields π at intervals of the
period τ . To obtain values of π within a period, we propagate
it by a fraction of τ as follows:

π(t ) =
{

eW1tπ(0), 0 � t < τ
2

eW2(t− τ
2 )eW1τ/2π(0), τ

2 � t < τ.
(15)

The time-dependent steady-state current passing along an
edge of the lattice from site k to neighboring site l is given
simply by jlk (t ) = πk (t )Wlk (t ) − πl (t )Wkl (t ).

Suppose, however, that we do not want to resolve the
temporal variations of the currents, and instead care about
a period-averaged macroscopic current whose microscopic
edge currents are weighted by a matrix d,

j̄ = 1

τ

∫ τ

0
dt

∑
kl

dlk jlk (t ). (16)

Being a current, j̄ must switch signs upon reversal of time.
Here, j̄ is a generalized scalar current which averages over
both time and space. For example, j̄ is the net particle current
in the x direction when we set

dlk =
⎧⎨
⎩

+1, k directly to the left of l
−1, k directly to the right of l
0, otherwise.

(17)

Directly computing Eq. (16) requires integrating jlk (t ) over
all t within a period. One can alternatively obtain the mean
and variance of that period-averaged current by computing,
via spectral tools, the scaled cumulant-generating function
(SCGF),

ψj̄ (λ) := lim
n→∞

1

n
ln〈eλnj̄ 〉n, (18)

where the expected value 〈·〉n is taken over all possible n-
period trajectories. Knowledge of ψj̄ (λ) yields all cumulants
of j̄ ; in particular,

〈j̄ 〉 = dψj̄

dλ

∣∣∣∣
λ=0

and 〈δj̄ 2〉 = 1

n

d2ψj̄

dλ2

∣∣∣∣
λ=0

, (19)

where δj̄ = j̄ − 〈j̄ 〉. Casting the period-averaged current
statistics in terms of the SCGF can be useful because ψj̄ (λ) is
practically computed as the maximal eigenvalue of a product
of matrix exponentials [75–78],

ψj̄ (λ) = 1

τ
ln max eig

(
eW2(λ)τ/2eW1(λ)τ/2

)
, (20)

FIG. 3. Current as a function of driving frequency. Average hor-
izontal particle velocities computed for driving frequencies ranging
from 10 to 2000 kHz. Currents were calculated using both spectral
methods (red) and from single-particle Langevin simulations (blue)
as described in the text. Spectral calculations were performed on
a 100 × 101 grid. Langevin simulations were averaged over 512
independent 10 ms trajectories with a time step �t of 35 ps. Error
bars represent the standard error of the mean. The inset reveals a
subtle current reversal at a frequency of approximately 1100 kHz.

where the so-called tilted rate matrices Wm(λ) are constructed
from the original rate matrices Wm as

[Wm(λ)]lk := [Wm]lkeλdlk . (21)

Practically, the mean period-averaged current 〈j̄ 〉 is computed
by evaluating the maximum eigenvalue of the tilted matrix
in the limit of small λ. Such a spectral approach efficiently
enables computation of the mean current as a function of
system parameters (driving field strength, diffusion constant,
etc.) without detailed attention to the mechanism of trans-
port. Rather than focus on the trajectories, mean currents are
quickly extracted from a single eigenvalue calculation.

Though we have presented a spectral technique in the spe-
cial case of square-wave potentials, the methodology general-
izes naturally by approximating an arbitrary time-dependent
rate matrix W(t ) as a collection of infinitesimal piecewise-
constant rate matrices. A more compete derivation of that
generalization is presented in Appendix B.

III. RESULTS

A. A subtle current reversal

We employed the spectral calculations of Sec. II C to
compute the current in response to different driving frequen-
cies. To further confirm that the discretization did not intro-
duce artifacts, we repeated those calculations with Langevin
simulations. Agreement is clear from Fig. 3, which shows
negative currents at low frequency, small positive currents
at high frequency, and a subtle current reversal around f ≡
1/τ = 1100 kHz. We focused on the jump process model
to understand the nature of the current reversal: why does
current vanish in the limit of infinitely slow or infinitely
fast driving, why does low-frequency driving push particles
to the left while high-frequency pushes to the right, what
sets the frequency scale of the crossover, and how could the
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(a) (b)

(c) (d)

FIG. 4. Asymmetry of single-period displacements. After a full driving period of length τ , the jump process results in a displacement
�x. (a) At low frequency, i.e., 100 kHz, this displacement distribution is dominated by three peaks which stay in the original potential
minima or move to adjacent minima to the left or right. (b) The imbalance between right and left, reported by ln[ρ(�x)/ ln ρ(−�x)], shows
a low-frequency preference for leftward currents regardless of the magnitude of displacement. By contrast, (c) while displacements at high
frequency, i.e., 1600 kHz, are nearly symmetrical and noticeably smaller than the spatial period xmax, (d) a left-right asymmetry can be
seen for the rare large displacements whose magnitude exceeds half the spatial period. All distributions are computed using a grid spacing
h = 1/56 μm.

potential be sculpted so as to make the current reversal more
pronounced?

The first question is the most straightforward. At low
frequencies, the driving is slow enough that the system can
equilibrate on each landscape before the drive toggles to the
other landscape. Because equilibrium systems do not support
currents, the transient flow developed upon switching between
rate matrices W1 and W2 is the only source of current. The
period-averaged current, which bears a prefactor τ−1, thus
vanishes in the limit of large τ .

At high frequencies, the driving is so rapid that the system
cannot respond fast enough to each segment of the driving
potential; instead, the system feels an averaged rate matrix
Weff = (W1 + W2)/2. In other words, there is a separation of
timescales between that of the driving potential and that of the
system’s response. Mathematically, this intuition follows from
the high-frequency (τ → 0) limit of the Baker-Campbell-
Hausdorff expansion,

exp

[
τW2

2

]
exp

[
τW1

2

]
= exp

[
τWeff + O(τ 2)

]
. (22)

Because both W1 and W2 are derived from potential energy
landscapes, they both obey detailed balance. Their average,

which is associated with the average of the two potential
energy landscapes, must likewise obey detailed balance and
have vanishing current.

Between the f → 0 and f → ∞ extremes, the current
depends on the kinetics of driven barrier crossing events,
which cannot be so easily rationalized. Spatial discretization
and associated spectral methods offer a powerful tool to
numerically interrogate the intermediate regime without the
noise of trajectory sampling.

B. Origin of current reversal

To compare the low- and high-frequency behaviors, we
focused on the driving frequencies that give rise to the maxi-
mum and minimum currents from Fig. 3. We will consider a
characteristic low-frequency driving to be flf = 100 kHz and
a characteristic high-frequency driving to be fhf = 1600 kHz,
chosen to roughly correspond to frequencies resulting in the
most negative and most positive currents, respectively. As
described in Sec. II C, we computed the time-periodic steady-
state distributions on the grid for each driving frequency.
Those steady-state distributions were used as the initial den-
sity, which was then propagated for a full period. To keep track
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(a) (b)

(c) (d)

FIG. 5. Evolution of density at low frequency. Snapshots of densities and currents obtained by spectral calculations for a single particle
hopping across multiple periodic replicas with driving frequency flf = 100 kHz. Densities are plotted with a hyperbolic tangent scale to
emphasize the regions of low probability. The central replica (enclosed by dashed lines) is initialized at t = 0 in the time-periodic steady-state
distribution. Each blue curve across the bottom of a plot is the z = 0 cross section of the potential U upon which the dynamics will relax for the
time τ/4 that separates each snapshot: (a) t = 0, (b) t = τ/4, (c) t = τ/2, and (d) t = 3τ/4. That potential, with peak-to-trough height of Vmax,
is scaled and shifted to rest along z = 0 in the plot to highlight the x dependence of the potential along the bottom surface. All distributions are
computed using a grid spacing h = 1/56 μm.

of motion into the neighboring replicas, the periodic boundary
conditions were unfolded and calculations were performed
using a collection of five neighboring cells surrounded by
closed boundaries [79]. After initializing density in the central
cell (see Fig. 5 for an illustration of the central three replicas),
the net displacement along the x direction was computed
with an explicit matrix propagator. The distribution of this
displacement, ρ(�x), is plotted in Fig. 4, showing that low-
frequency displacements are dominated by shifts of the form
�x = nxmax for n = 0,±1 with a net leftward preference. In
contrast, high-frequency displacements more closely resem-
ble thermal motion—the displacements have a nearly Gaus-
sian distribution about �x = 0. The high-frequency currents
seem to emerge from a subtle asymmetric deviation from
normality.

To more clearly illuminate the asymmetry in both dis-
placement distributions, we also plot in Fig. 4 the relative
probability of +�x and −�x as a function of the magnitude
of displacement. This plot shows a low-frequency asymmetry
for all values of �x, but the high-frequency displacement
distribution appears to be symmetric up to a length scale of
about x ∼ xmax/2. Notably, displacements of this magnitude
or larger are exceedingly rare when f = fhf . In other words,
the low-frequency asymmetry is present for typical trajecto-
ries, whereas the high-frequency asymmetry emerges only at
the level of rare events.

To gain a mechanistic perspective into that difference, we
traced the time-dependent flow of probability, starting with
the low-frequency case. In Eq. (15), we had computed the
time-periodic steady-state density from a top eigenvector. We

propagated this density over one temporal period using the
rate matrix W that imposed periodic boundary conditions.
To most simply distinguish between leftward and rightward
currents, we then propagated this density without periodic
boundaries. That evolution of density, shown in Fig. 5, re-
flects a mechanism reminiscent of a one-dimensional flashing
ratchet. The motion in the x direction switches between a
sawtooth and a flat potential, with the switch triggered by
periodic motion along the z direction.

The periodic motion in the z direction is easily rationalized
from the tilting of the landscapes in Fig. 2, and the resulting
current along x follows from the flashing ratchet mechanism.
Particles that accumulate near zmax at t = τ/2 can diffuse left
or right symmetrically, but as the particles descend toward
z = 0 during the τ/2 � t � τ relaxation, more of the leftward
diffusing particles will have made it past the barrier than
their rightward counterparts. The result is net motion that
yields a displacement by one spatial period to the left more
often than to the right. Thus, the direction of low-frequency
motion requires one to inspect the shape of the z = 0 potential
(blue lines in Fig. 5) during the relaxation from high to low
z (τ/2 � t � τ ); current will move along x in the direction
with the shortest trough-to-peak distance as this will be the
barrier around which it is easiest to diffuse.

It is more difficult to identify the mechanism for high-
frequency positive current because the displacement distribu-
tions are nearly symmetrical. The asymmetry is more subtle
than in the low-frequency case, so it cannot be simply ob-
served in plots similar to Fig. 5. Instead, we detect the origin
of the asymmetry by studying the evolution from an initial
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Asymmetry in the evolution of density at high frequency. Densities are plotted with a hyperbolic tangent scale to emphasize the
regions of low probability. The relaxation of density and current is depicted at (a) t = τ/4, (b) t = τ/2, (c) t = 3τ/4, and (d) t = τ , when
initialized at the bottom of the well at time 0. Snapshots of the density and current are also shown at (e) t = τ/4, (f) t = τ/2, (g) t = 3τ/4,
and (h) t = τ , when initialized at the trough at time τ/2. Because the density is slightly repelled from z = 0 in (a) and (b) compared to (e) and
(f), much less density moves far enough left to reach the z = 0 well in (b) than the density that moves right in (f). This imbalance results in the
rightward fat tail in (h) that exceeds the leftward fat tail in (d). As in Fig. 5, a lattice with grid spacing h = 1/56 μm was employed, and the
blue curve across the bottom of the plots is the z = 0 cross section of the potential U upon which the dynamics will relax for the time τ/4 that
separates each snapshot.

condition atop a local maximum of the energy. Relaxation
from this initial condition is particularly revealing since the
probability that accumulates in a trough at the end of one
period is situated near the local maximum as the next period
begins. One can therefore reason that the dominant trajectories
are those which relax from a local maximum, but there are two
such maxima: one at t = 0 and another at t = τ/2, shown in
the two rows of Fig. 6. The period-averaged current arises out
of the balance of those two relaxation processes.

If not for motion along z, symmetry arguments would
require the two relaxations to be mirror images of each other,
yielding symmetric displacement distributions and vanishing
current. But the two rows of Fig. 6 are not mirror images, and
the imbalance between the probability of the large displace-
ments in the “fat tails” of the distributions explains the net
positive current. That imbalance of the large displacements
is traced back to a slight difference in the accumulation
of probability in the z = 0 wells shown in Figs. 6(b) and
6(f). Due to the tilt of the potential along z, Fig. 6(b) has
less probability accumulate in its well than Fig. 6(f). Any
displacements that are too small to transit from peak to well
(x < xmax/2) are not appreciably affected by the difference,
but the rare trajectories that move all the way from peak to
well are thus more favored in Fig. 6(f) when the tilt steers
particles toward z = 0. Therefore, the effect of the tilt is
to favor the peak-to-trough motion during the τ/2 � t � τ

relaxation over the complementary motion during 0 � t �
τ/2, yielding net positive current.

The importance of the rare large displacements explains
why the direction of high-frequency motion is exactly oppo-
site that of low frequency. For the low-frequency case, we
already noted that the direction of motion could be simply ex-
plained by the shortest trough-to-peak distance of the applied
potential at z = 0 during the τ/2 � t � τ relaxation. At high
frequency, current instead moves along x in the direction with
the shortest peak-to-trough distance.

C. Sculpting the energy landscapes

We have traced a reversal in the sign of the steady-state
horizontal current back to the competition between two op-
posing classes of mechanisms. However, the current reversal
is subtle for the potential U—any current generated under
driving frequencies past 1100 kHz is almost imperceptible.
How can one sculpt the energy landscape such that both
negative and positive currents are similar in magnitude? We
show that the low- and high-frequency mechanisms discussed
in Sec. III B inform the manner in which the landscape should
be altered.

To make the current switch between positive and negative
values of similar magnitude, we seek a potential that curtails
the low-frequency negative current and enhances the high-
frequency positive current. We developed intuition about how
to achieve this goal by focusing on one-dimensional diffusion
along three different pathways, labeled A, B, and C on the new
sculpted landscape in Fig. 7. The new electrostatic potential
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FIG. 7. Two-dimensional landscapes associated with the electrostatic potential U2 at times (a) 0 < t � τ/2 and (b) t > τ/2. The arrows
correspond to pathways that regulate the current reversal. Timescales for one-dimensional diffusion along pathways A, B, and C are reported
in Table I.

U2(x, z, t ) is computed from a numerical solution to Laplace’s
equation on a 150 × 150 mesh with boundary conditions as in
U (x, z, t ), but with spatial component

X (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
+ a3

2
sin

(
5πx

2xmax

)
, r � 2

5

1

2
, 2

5 < r � 3
5

1

2
− a3

2
cos

(
5πx

2xmax

)
, r > 3

5 ,

(23)

in terms of r = x/xmax − �x/xmax�. The parameter a3 is as-
signed the value 1.1 to match the amplitude of potential U at
z = 0.

The new potential was designed to have a plateau in X (x)
so that the diffusion along A remains essentially unaffected,
but the timescale for motion along B will increase. Moreover,
the constant vertical offset at z = 0 being smaller in U2

TABLE I. Timescales for diffusion along pathways A, B, and C
of Fig. 7 for potential landscapes U and U2. Reported timescales
are the averages and standard errors of the first-passage time for
traversing the pathways, collected from 104 one-dimensional Gille-
spie simulations during relaxation on a fixed landscape. Relaxation
from peak to trough along the two horizontal pathways, A and B, was
simulated using the τ/2 � t � τ potential, while C relaxed using the
0 � t � τ/2 potential. For comparison, the maximal negative cur-
rent is generated with a driving frequency that switches landscapes
after about 5200 and 5900 ns for U and U2, respectively, so there is
sufficient time for diffusion along all three pathways. By contrast,
the maximal positive current is generated by a driving frequency
that allows relaxation on U and U2 for only around 310 and 630 ns,
respectively. Note that with landscape U2, that driving rate provides
enough time for descents down A which are significantly less rare
than they are on landscape U .

Pathway U -driven (ns) U2-driven (ns)

A 561 ± 2 518 ± 2
B 1087 ± 3 2408 ± 15
C 3613 ± 13 4324 ± 17

than in U increases the timescale for motion along C as
was confirmed by Gillespie simulations of one-dimensional
diffusion on both the old (U ) and new (U2) landscapes. The
first-passage times along those pathways, collected in Table I,
confirm that the changes in the landscape have the desired
effect of slowing diffusion along B and C. Though we did not
intend to appreciably alter the timescale for diffusing along A,
that diffusion was slightly faster on landscape U2 than on the
original landscape U .

The changes to the motion along A, B, and C work
in concert to enhance the rightward current (see Fig. 8).

FIG. 8. Frequency-dependent current with the altered landscape
U2. Average horizontal particle velocities were computed for driving
frequencies ranging from 10 to 2000 kHz using potential U2 as
the driving protocol. Currents were calculated using both spectral
methods (red) and from single-particle Langevin simulations (blue)
as described in the text. Spectral calculations were performed on
a 100 × 101 grid. Langevin simulations were averaged over 512
independent 10 ms trajectories with a time step �t of 35 ps. Relative
to Fig. 3, the current under this driving protocol exhibits stronger
positive currents and weaker negative currents, thus rendering the
current reversal more pronounced. Here, the crossover occurs at a
frequency of approximately 500 kHz, a value much smaller than that
seen under driving with U .
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Because the high-frequency trajectories that contribute right-
ward motion are rare, even a small speedup along A can ren-
der those critical large-deviation trajectories significantly less
rare, thereby yielding more positive current at high frequency.
The increased positive current also arises by disfavoring the
low-frequency mechanism. The plateau along B provides
a trap that catches some fraction of the trajectories that
would have otherwise moved left along the flashing ratchet
mechanism, and that mechanism becomes unfavorable at a
lower current-reversal frequency due to the slower motion
along C.

IV. CONCLUSIONS

Thermalized equilibrium systems are fully characterized
by the Boltzmann distribution. If one aims to alter the steady
state, it is sufficient to consider changes to the energy land-
scape without explicitly worrying about the dynamics on
that landscape. If, however, one switches between multiple
energy landscapes, the ensuing nonequilibrium dynamics can
relax into more complicated time-dependent steady states
with ratcheting current. In that event, the relaxation dynamics
on the landscapes cannot be ignored. In fact, it is the interplay
between the timescale of this dynamics and the timescale of
the switching landscapes that regulates current generation.
This additional complexity means that efforts to design a
time-dependent landscape that generates a desired current will
require explicitly modeling the dynamical system.

In this work, we discussed straightforward ways to model
that dynamics—with discretization in time or in space. Spatial
discretization allowed us to view the problem as a Markov
jump process, which could be conditioned to generate posi-
tive or negative current. Analyses of the relative probability
of those currents revealed that a leftward bias seen at low
frequency results from an asymmetry in typical trajectories,
whereas a rightward bias seen at high frequency stems from
an asymmetry on the level of rare trajectories. Furthermore,
we showed how that insight allowed for modifications to the
landscape that would impact the frequency dependence of the
current.

Looking forward, it will be interesting to extend the tools
and analysis in two complementary directions. First, how well
can one reverse-engineer energy landscapes given a desired
frequency response as an input? We have showed how to
enhance the high-frequency positive current, but might it be
possible to design more complex landscapes that support
multiple current reversals? The discrete-space lattice models
of this work will provide a numerically efficient playground
to explore how flexible of a frequency response is possible.
Second, while we have analyzed a single ratcheting particle,
most real ratchets involve multiple interacting particles. One
route to considering the effects of interactions between par-
ticles is to add more particles to the time-dependent lattice
models studied here. In their simplest form, these models
could be exclusion processes with time-dependent driving.
The spectral methods we employed would be challenged by
the fact that the state space would grow exponentially with the
number of particles, but the models could be analyzed using
Gillespie simulations or potentially with approximations built
on a matrix product ansatz.
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APPENDIX A: CONVERGENCE OF DISCRETIZED
EQUATIONS OF MOTION

Both continuous-space and discrete-space methods are
approximations that converge to continuum Fokker-Planck
dynamics as the discretization size (�t or �h) decreases.
We compare the relative merits of these methods here by
analyzing how the necessary discretization depends on the
diffusion constant and the strength of the external driving. In
short, there can be computational advantages to either method
depending on the particular values of Vmax and D.

When discretizing time, an upper bound on the acceptable
time step �t may be estimated by requiring that the particle
displacement over that time step not grow too large. We iden-
tify the terms in Eq. (8) as a deterministic displacement xdet =
μ�t f (xi ) and a stochastic displacement xstoc = √

2D�t ηi
and require as a rough heuristic that both deterministic and
stochastic displacements are no more than one-hundredth
the size of the simulation box. That is to say, �t must be
sufficiently small to ensure

max

(
xdet

xmax
,

xstoc

xmax
,

zdet

zmax
,

zstoc

zmax

)
� 0.01. (A1)

For a fixed time step �t , the heuristic constraint of Eq. (A1)
will only be satisfied if the diffusion constant D and the maxi-
mum driving amplitude Vmax (≡ maxt |T (t )|) are not too large.
For system thickness zmax = 1 μm, driving amplitudes up to
10 V, and diffusion constants of 1–100 μm2 ms−1, which are
reasonable values for experimental systems involving electron
ratchets [65], we find that a modest time step of the order of
100 ps is sufficient for accurate simulation. Accessing larger
diffusion constants or larger Vmax requires smaller time steps,
as illustrated in Fig. 9.

Similar to the temporal discretization, the grid spacing for
the lattice model must be sufficiently small to ensure conver-
gence. Although precise limits on the acceptable grid spacing
depend heavily on the energy landscape, the minimum re-
quirement is that the hopping rates between neighboring sites
of Eq. (12) cannot be negative. This constraint sets an upper
bound for the discretization of the lattice with the largest
allowable grid spacing h∗ being the one which causes the
smallest rate to drop to zero:

h∗ = min
i

2D

μ| fi| . (A2)

Any h > h∗ involves unphysical negative rates, thus severely
affecting the accuracy of the discretization. If the driving force
Vmax is too large, however, h∗ becomes so small that converged
calculations require too fine a grid to be computationally
competitive with the Langevin approach. As shown in Fig. 9,
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(a) (b)

FIG. 9. Stability of temporal and spatial discretization. (a) Blue curves and (b) green curves represent upper bounds for both the driving
amplitude Vmax and diffusion constant D needed for well-converged discrete-time and discrete-space currents, respectively. All the data points
shown were generated with U as the driving protocol. We assume that time steps �t satisfying Eq. (A1) and grid spacings h = h∗ are the
marginal values separating reliable results from those which may become unstable. The voltage and diffusion constant which results in these
marginal discretizations are shown for three choices of h and �t .

the discrete-space computations become more favorable—
converging with a coarser grid—as the diffusion constant in-
creases, while the discrete-time simulations show the opposite
trend, requiring a smaller time step and hence a more expen-
sive calculation. Roughly speaking, discrete-time simulations
are preferable given a driving voltage beyond 1 V, whereas the
discrete-space calculations are more attractive underneath that
threshold.

For various driving frequencies and both driving protocols
U and U2, Fig. 10 demonstrates the convergence of discrete-
space currents toward the continuum limit as the grid spacing
h is decreased. The value of h chosen in our calculations,
1/100 μm, is more than sufficiently small for the convergence
of spatially discretized currents, as conveyed by the figure.

APPENDIX B: SCALED CUMULANT-GENERATING
FUNCTION FROM MARKOV PROCESS

We derive Eq. (20) by a limiting procedure. Let the time-
periodic rate matrix W have a period τ consisting of ν equal

segments of time-constant rate matrices W1, W2, . . . , Wν .
The SCGF ψX (λ) of a Markov jump process with finite state
space � = {1, . . . , |�|} for the random variable

X = 1

T

∑
i, j∈�

d jiq ji(0, T ) (B1)

is given by

ψX (λ) = 1

T
ln max eig

ν−1∏
κ=0

e(T/ν)Wν−κ (λ), (B2)

where the tilted rate matrices Wκ (λ) satisfy

[Wκ (λ)] ji := [Wκ ] jie
λd ji . (B3)

Proof. Discretize the jump process by considering snap-
shots of the system at intervals �t = T/N , N → ∞, as a
Markov chain. Similarly discretize X , with

T X = lim
N→∞

N∑
k=2

dσk−1,σk , (B4)

(a) (b)

FIG. 10. Convergence of spatial and temporal discretization. Average horizontal particle velocities computed from spectral calculations
are plotted with dots for potential (a) U and (b) U2. As the grid spacing shrinks, currents approach those computed from an average of 512
independent 10 ms Langevin trajectories with a time step �t of 35 ps. Each shaded rectangle shows one standard error around the corresponding
Langevin currents.
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where σk denotes the state of the system at time t = k�t .
Hence, by definition,

〈eλT X 〉 = lim
N→∞

∑
σ1,... ,σN

[Tν (λ)]σN ,σN−1 · · · [T1(λ)]σ2,σ1 pσ1

= lim
N→∞

1�Tν (λ)N/ν · · · T1(λ)N/νp, (B5)

where pi is the probability of starting out in state i, p the vector
with components pi, Tκ (λ) the tilted transition matrix with
elements satisfying

[Tκ (λ)] ji := [Tκ ] jie
λd ji , (B6)

where [Tκ ] ji is the transition probability from the state i to
the state j subject to the rate matrix Wκ , and 1 is the vector
with elements all ones. In the large-N limit, by the Perron-
Frobenius theorem,

〈eλT X 〉 = lim
N→∞

cλ max eig
ν−1∏
κ=0

Tν−κ (λ)N/ν, (B7)

for some insignificant factor cλ, which gives

ψX (λ) = 1

T
ln max eig

ν−1∏
κ=0

Tν−κ (λ)N/ν. (B8)

We finally identify the elements of the tilted rate matrices
Wκ (λ). The Wκ (λ) are defined as generators of the tilted
transition matrices Tκ (λ), and their elements may hence be
found by a Taylor expansion in �t , with

[Tκ (λ)] ji = [Tκ ] jie
λd ji ≈ δ ji + [Wκ ] jie

λd ji�t (B9)

=: [I + Wκ (λ)�t] ji,

and inspecting the coefficient of �t in the final equality yields,
as desired,

[Wκ (λ)] ji := [Wκ ] jie
λd ji . (B10)
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