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ABSTRACT
Reaction rates are a complicated function of molecular interactions, which can be selected from vast chemical design spaces. Seeking the
design that optimizes a rate is a particularly challenging problem since the rate calculation for any one design is itself a difficult compu-
tation. Toward this end, we demonstrate a strategy based on transition path sampling to generate an ensemble of designs and reactive
trajectories with a preference for fast reaction rates. Each step of the Monte Carlo procedure requires a measure of how a design con-
strains molecular configurations, expressed via the reciprocal of the partition function for the design. Although the reciprocal of the partition
function would be prohibitively expensive to compute, we apply Booth’s method for generating unbiased estimates of a reciprocal of an
integral to sample designs without bias. A generalization with multiple trajectories introduces a stronger preference for fast rates, pushing
the sampled designs closer to the optimal design. We illustrate the methodology on two toy models of increasing complexity: escape of
a single particle from a Lennard-Jones potential well of tunable depth and escape from a metastable tetrahedral cluster with tunable pair
potentials.
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I. INTRODUCTION
One of the most challenging and important aims of theoret-

ical and computational chemistry is the calculation of rates. The
speed of chemical events can vary over many orders of magnitude,
ranging from electron transfer on a femtosecond timescale to mate-
rial aging over millennia. Direct simulation of quantum or classical
dynamics can provide access to these fastest timescales, but numeri-
cally computing rates for activated processes is notoriously difficult
due to the rare event problem.1–4 To combat this problem, sev-
eral related methodologies have been developed based on the con-
nection between time correlation functions and rate constants.3,5–12

Crucially, those correlation functions can often be calculated from
dynamical trajectories of modest length using methods such as tran-
sition path sampling,3,13–22 transition interface sampling,23–25 and
forward flux sampling.26–31

In principle, one should thus be able to attack chemical design
problems—problems like determining what side chains of a peptide
most effectively amplify a rate of catalysis. In practice, it becomes
very expensive to perform a converged rate calculation for every
candidate design. One approach to circumvent this expense is to

sample the design space with a random walker, statistically biased
to spend most of its time visiting designs with fast rates. Let λ denote
all parameters one seeks to design; these could be particle charges,
amino acid identities, Lennard-Jones parameters, bond strengths,
equilibrium bond lengths, etc. Each design has some rate constant
k(λ), and one might hope to sample possible designs from the prob-
ability distribution with probability density P(λ)∝ k(λ), thereby giv-
ing extra statistical weight to those designs with faster rates. A sim-
ple, straightforward way to sample designs is to carry out a Markov
Chain Monte Carlo (MCMC) simulation, consisting of three iterated
steps: (1) attempt to transition from design λ to a new design λ′ with
probability Pgen(λ→ λ′); (2) compute a converged rate calculation of
both k(λ) and k(λ′); and (3) accept the new design with probability

Pacc[λ→ λ′] = min[1,
Pgen(λ′ → λ)k(λ′)
Pgen(λ→ λ′)k(λ) ]. (1)

While this procedure would steer the sampled designs toward those
with faster rates, it requires high-quality converged rate calculations
for every proposed λ.
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To radically reduce the computational expense, one might
instead hope to carry out the MCMC dynamics with noisy estimates
for k(λ), akin to Ceperley and Dewing’s penalty method for random
walks with noisy energies.32 The essential idea is to execute a ran-
dom walk in the higher-dimensional space of designs and reactive
trajectories, those that transition from the reactant to product in a
fixed observation time tobs. Every step of the Monte Carlo procedure
outlined in Eq. (1) requires a converged rate calculation to decide
whether to accept a newly proposed design, but each step of the
joint-space random walker uses a noisy estimate of that rate. This
noisy estimate characterizes how probable it is to generate a reactive
trajectory given the design λ, assuming the trajectory was initialized
in an equilibrium reactant configuration.

The requirement that reactive trajectories be initialized in an
equilibrium ensemble presents a significant technical problem, the
resolution of which is the focus of this manuscript. The challenge is
that computing the acceptance probability for a Monte Carlo step
requires the Boltzmann probability of the initial condition, which
depends on a design-dependent canonical partition function. Were
the design held fixed, a ratio of identical partition functions would
cancel in the Monte Carlo acceptance formulas. Without that can-
cellation, the MCMC procedure requires unbiased estimates of the
reciprocal of the partition function. In this manuscript, we show how
those estimates can be obtained using Booth’s method for generat-
ing unbiased estimates of integrals.33 By applying that strategy to
the rate design problem, we can sample P(λ) ∝ k(λ) without con-
verged rate estimates. A stronger preference for designs with large
rates is applied by introducing L independent trajectories to sample
P(λ)∝ k(λ)L.

This manuscript is split into two parts. We review and develop
the theoretical tools in Sec. II. We then illustrate the methodology on
two model systems in Sec. III. The first simple system—sampling dif-
ferent strengths of attraction between two Lennard-Jones particles
in proportion to their unbinding rate—serves to validate the mathe-
matics by comparing the results from sampling with explicit numer-
ical calculations. The second system—sampling a three-dimensional
design space of interaction parameters between a particle metastably
trapped in a cage—more clearly illustrates the potential benefits
when studying more complex, higher-dimensional problems.

II. THEORY
A. Reaction rates and trajectory-space sampling

Consider the phase space of a classical system, x = {r, p}, which
consists of a set of positions of all N particles, r = {r1, r2, . . ., rN},
and their momenta, p = {p1, p2, . . ., pN}. The total energy of this
system is given by the Hamiltonian H, the sum of the kinetic energy
K and potential energy U: H(x; λ) = U(r; λ) + K(p; λ). The energy
depends not only on r but also on some parameters λ, which could
include particle charges, Lennard-Jones parameters, bond strengths,
etc. In this work, we imagine these “design parameters” to be time-
independent and controllable. A system evolving under H(x; λ)
traces out trajectories in phase space that we denoteÐ→x . We will focus
on discrete time-evolution generated by numerical integration such
that the trajectory is a sequence of M + 1 points in phase space sepa-
rated by increments of timeΔt:Ð→x = {x(0), x(Δt), . . . , x(tobs)}, with
observation time tobs = MΔt.

Chemical systems tend to be high-dimensional with potential
energy surfaces that possess multiple metastable basins. Trajectories
occupy a metastable region of phase space for relatively long periods
of time before making rare transitions to another metastable region.
In the simplest scenario, there are two principal, non-overlapping
basins,A and B, which correspond to reactants and products, respec-
tively. Provided that the transitions are rare, there exists a first-order
rate constant kAB(λ) that depends on the particular design. If each
A→ B transition is independent of previous transitions, e.g., if mem-
ory is lost, then the process is Poissonian with the time between
reactions, τ, coming from the distribution

P(τ∣λ) = kAB(λ)e−kAB(λ)τ . (2)

The probability that a trajectory, starting in A, will exhibit at least
one reaction in time tobs is thus given by

∫
tobs

0
dτ kAB(λ)e−kAB(λ)τ = 1 − e−kAB(λ)tobs

≈ kAB(λ)tobs. (3)

The final approximation is justified when tobs ≪ 1/kAB(λ), in which
case trajectories only have time for either zero or one reaction event.

Following Ref. 3, the probability of a reaction can also be
computed as

Preaction(λ, tobs)

= ∫ DÐ→x hA(x(0))hB(x(tobs))e−βH(x(0);λ)P(Ð→x ∣λ, x(0))
ZA(λ)

, (4)

where β = (kBT)−1 is the inverse temperature, kB is Boltzmann’s
constant, and hA and hB are indicator functions that evaluates to
zero or one so as to constrain trajectories to end as products. Here,
the probability of trajectory Ð→x has been decomposed into a prod-
uct of the equilibrium Boltzmann probability for the initial reactant
configuration x(0) times the (normalized) probability of subsequent
dynamics, given that initialization, P(Ð→x ∣λ, x(0)). The canonical
partition function of the reactant state,

ZA(λ) = ∫ dx(0)hA(x(0))e−βH(x(0);λ), (5)

measures how λ impacts the Boltzmann probability for being initial-
ized in a reactant configuration.

Provided tobs≪ 1/kAB(λ), the Poisson description of Eq. (3) can
be equated with the trajectory-space average of Eq. (4). This equality
expresses the rate constant in terms of a trajectory-space average,

kAB(λ) =
1
tobs
∫ DÐ→x ρ(Ð→x , λ), (6)

where

ρ(Ð→x , λ) = hA(x(0))hB(x(tobs))
e−βH(x(0);λ)

ZA(λ)
P(Ð→x ∣λ, x(0)). (7)

Upon normalizing, P(Ð→x , λ) = ρ(Ð→x , λ)/N has the interpretation of
a joint distribution over trajectories and designs, with normalization

N = ∫ dλ ∫ DÐ→x ρ(Ð→x , λ). (8)

If one samples trajectories and designs from that distribution, the
marginal distribution over designs would therefore be
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P(λ) = ∫ DÐ→x P(Ð→x , λ) = tobs

N
kAB(λ). (9)

The ratio of rates for designs λ and λ′ is consequently the relative
likelihood of observing λ and λ′ in the sampling of P(Ð→x , λ),

P(λ)
P(λ′) =

kAB(λ)
kAB(λ′)

. (10)

The goal of sampling P(λ) ∝ kAB(λ) has been reduced to
the problem of sampling the joint distribution P(Ð→x , λ), provided
tobs ≪ 1/kAB. Equation (10) would break down if tobs were too large,
so one may imagine using arbitrarily small tobs. That choice results
in a different issue. Rare A → B transitions occupy A for a com-
paratively long time before carrying out a rapid passage over the
barrier. By pushing to smaller tobs, one can excise some of that wait-
ing time without impacting the mechanism of the barrier crossing,
but there is a minimum amount of time, tcross, needed to cross. Using
an observation time that is less than this crossing time also causes
Eq. (10) to break down. We therefore require that a suitable tobs
is chosen such that both timescale restrictions are met (tcross < tobs
≪ 1/kAB) for all sampled designs. The necessary timescale separation
is illustrated explicitly for our Lennard-Jones unbinding problem in
Fig. 1.

B. The reciprocal partition function problem
The strategy of Sec. II A allowed us to convert the problem

of sampling P(λ) ∝ kAB(λ) into the higher-dimensional joint prob-
lem P(Ð→x , λ) ∝ ρ(Ð→x , λ), with ρ given by Eq. (7). That higher-
dimensional space can be sampled with a Metropolis–Hastings
MCMC procedure by proposing a change from Ð→x , λ to some new
Ð→x ′, λ′ according to a generation probability Pgen(Ð→x , λ → Ð→x ′, λ′).
That proposal move is then conditionally accepted with probability

Pacc = min
⎡⎢⎢⎢⎣

1,
ρ(Ð→x ′, λ′)Pgen(Ð→x ′, λ′ →Ð→x , λ)
ρ(Ð→x , λ)Pgen(Ð→x , λ→Ð→x ′, λ′)

⎤⎥⎥⎥⎦
. (11)

The acceptance probability depends on the manner that new designs
and trajectories are generated, that is, on Pgen. Specific choices
of proposal moves are discussed in Appendix A, but a typical
feature of those strategies is that the ratio of generation probabil-
ities can be explicitly computed for any Ð→x , λ and Ð→x ′, λ′. In con-
trast, it is not typically possible to compute the ratio of ρ factors in
Eq. (11),

ρ(Ð→x ′, λ′)
ρ(Ð→x , λ)

= ZA(λ′)−1

ZA(λ)−1 ×
e−βH(x

′
(0);λ′)

e−βH(x(0);λ)

× hA(x′(0))hB(x′(tobs))
hA(x(0))hB(x(tobs))

× P(Ð→x ′∣λ′, x′(0))
P(Ð→x ∣λ, x(0))

. (12)

The only problematic term is the ratio of the reciprocal of the parti-
tion functions. Upon proposing a new λ′, Eqs. (11) and (12) require
that one can compute ZA(λ′)−1, but computing a partition function
is computationally expensive. Even if one were to exhaustively com-
pute ZA(λ′) by sampling phase space, the partition function would
only be known up to some sampling error, and an unbiased estimate
for ZA would give a biased estimate for Z−1

A . Inserting that biased
noise into the acceptance probability would bias the Markov chain’s
stationary distribution.

The problem is quite similar to Ceperley and Dewing’s consid-
eration of Monte Carlo with noisy energies,32 except now the noise
comes from imperfect computations of the ZA(λ)−1 terms. The res-
olution is to replace ZA(λ)−1 by an unbiased estimate ẐA(λ)−1(η),

FIG. 1. (a) Rate constants can be calculated by computing the probability of rare trajectories that execute transitions between states. Those rate constants depend on the
molecular design. In the test system of Sec. III, the molecular design is the choice of well depth of a Lennard-Jones potential. The rare reactive trajectories start in region A
and end in region B, given by the shaded red and blue areas, respectively. (b) An example of an unbinding trajectory that escapes from A to B. The timescale of the overall
rate is labeled as k−1

AB, and the much shorter timescale of just the escape event is labeled as tcross. (c) The transition path sampling framework for computing rates requires
the separation of timescales: tcross < tobs ≪ k−1

AB. The possible Lennard-Jones well depth ϵ and observation time tobs must be selected so the sampling is confined to the
green shaded region, where that timescale separation is valid. The red line represents the tobs and ϵ range that we numerically sampled in Secs. III B and III C.
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where the variables η are all of the random numbers drawn from a
distribution P(η) and used to estimate the reciprocal partition func-
tion. For example, if the estimate requires one to compute energies
of representatively sampled configurations, η would be the random
numbers necessary to construct such samples and P(η) would be
built up from the Gaussian or uniform distributions that the com-
puter’s random number generator used to select those random num-
bers. The unbiased estimate will appear naturally in the acceptance
probability when one samplesÐ→x , λ, and η in proportion to

ρ̃(Ð→x , λ,η) = P(η)ẐA(λ)−1(η)hA(x(0))hB(x(tobs))

× e−βH(x(0);λ)P(Ð→x ∣λ, x(0)). (13)

To be explicit, proposed changes Ð→x , λ,η → Ð→x ′, λ′,η′ are
accepted with probability

Pacc = min
⎡⎢⎢⎢⎣

1,
ρ̃(Ð→x ′, λ′,η′)Pgen(Ð→x ′, λ′ →Ð→x , λ)Pgen(η)
ρ̃(Ð→x , λ,η)Pgen(Ð→x , λ→Ð→x ′, λ′)Pgen(η′)

⎤⎥⎥⎥⎦
. (14)

We assume that the new estimate of the reciprocal partition func-
tion is generated by drawing new random numbers from Pgen(η′)
= P(η′). As before, the ratio of Pgen terms for Ð→x and λ in Eq. (11)
can be explicitly computed. The remaining ratio takes the same form
as Eq. (12) except that ZA(λ)−1 has been replaced by the estimate
ẐA(λ)−1,

ρ̃(Ð→x ′, λ′,η′)Pgen(η)
ρ̃(Ð→x , λ,η)Pgen(η′)

=
̂ZA(λ′)−1(η′)
ẐA(λ)−1(η)

× e−βH(x
′
(0);λ′)

e−βH(x(0);λ)

× hA(x′(0))hB(x′(tobs))
hA(x(0))hB(x(tobs))

× P(Ð→x ′∣λ′, x′(0))
P(Ð→x ∣λ, x(0))

. (15)

The resulting MCMC procedure in Ð→x , λ,η space can therefore
accept and reject proposal moves based on the noisy estimate in
lieu of the intractable reciprocal partition function. It is important
to note that the reciprocal partition function estimates are computed
from η, which, upon rejection, does not get updated to the trial value
η′. As such, the old estimate of the reciprocal partition function with
η must be “reused” until the next move is accepted.

By choosing a noisy estimate that is unbiased, we ensure that we
will recover the original ρ after marginalizing over the η variables,

ρ(Ð→x , λ) = ∫ dη ρ̃(Ð→x , λ,η) (16)

because

⟨ẐA(λ)−1⟩ = ∫ dηP(η)ẐA(λ)−1(η) = ZA(λ)−1. (17)

Indeed, this marginalization step required that we expressed Eq. (13)
in terms of an estimate of the reciprocal of the partition function, not
a reciprocal of an estimate of the partition function. The latter would
have been simpler to estimate, but it would not have marginalized
to give Eq. (7). Notably, we have not required that the acceptance

probabilities computed in Eq. (14) are unbiased estimates for those
of Eq. (11); they generally will not be.

The sampling scheme does not assume a low-variance estima-
tor, only one which is unbiased, but that variance can affect com-
putational performance. A large-variance estimate typically results
in more Monte Carlo rejections than one with low variance,32,34

but it could nevertheless be advantageous to use the large-variance
estimate if it is particularly cheap to compute.

From one perspective, the strategies employed are an exercise
in the usefulness of lifts to Monte Carlo methods.35–39 We ultimately
are interested in sampling P(λ), a distribution over possible designs,
but we access that distribution by targeting higher-dimensional dis-
tributions. A lift from λ to (Ð→x , λ) left us with the problematic recip-
rocal partition function, which we subsequently replaced by an esti-
mate via a second lift to (Ð→x , λ,η). To utilize this final lift, we require
a method for generating unbiased estimates of the reciprocal par-
tition function, a problem addressed in a more general setting by
Booth.33

C. Estimating reciprocals of partition functions
The partition function ZA(λ) involves an integral over all of

phase space, both r and p. Because the Hamiltonian decouples into
a potential energy depending on positions and a kinetic energy
depending on momenta, the (classical) partition function can be
decomposed as

ZA(λ) =
1
C
Z̄(λ)Z̃A(λ), (18)

where

Z̃A(λ) = ∫ drhA(r)e−βU(r;λ) (19)

is the configurational partition function,

Z̄(λ) = ∫ dp e−βK(p;λ) (20)

is the partition function for the momenta, and C is a constant that
handles the exchange symmetry for identical particles and the dis-
cretization of phase space. For example, the case of identical classical
particles in three dimensions gives C = h3NN!, where h is Planck’s
constant. The integral over momenta Z̄(λ) does not need to be esti-
mated because the quadratic form of kinetic energy allows it to be
computed explicitly as a Gaussian integral. In contrast, for all but
the simplest potential energies, we must estimate the configurational
contribution to get estimates of the reciprocal partition functions,

ẐA(λ)−1 = CZ̄(λ)−1 Ẑ
∼
A(λ)−1. (21)

In this work, we limit ourselves to changes of design that alter neither
C nor Z̄, in which case the contribution to a Monte Carlo acceptance
ratio comes from the Ẑ

∼
A(λ)−1 term.

That term is the reciprocal of an integral over r, precisely the
situation where Booth’s method provides an unbiased estimate.33

The core insight behind Booth’s approach is to replace the reciprocal
of Z̃A(λ) by a series expansion and to generate unbiased estimates
for each term in that series. A similar idea, extended to partition
functions of general probability distributions, is outlined in Ref. 40.
Using a geometric series, the expansion can be written in terms of a
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fixed reference design λref as

1
Z̃A(λ)

= 1

∫ dr hA(r) e−βU(r;λ)

= (1 + a(1 + a(1 + a(1 +⋯))))
∫ dr hA(r) e−βU(r;λref)

, (22)

where

a =
∫ dr hA(r) (e−βU(r;λref) − e−βU(r;λ))

∫ dr hA(r) e−βU(r;λref)
= 1 − Z̃A(λ)

Z̃A(λref)
(23)

must have a modulus less than one for the series to converge.
Although a depends on λ, we have suppressed that dependence
in the notation. It is generally intractable to compute a exactly,
but we can get unbiased estimates by sampling independent con-
figurations r(1), r(2), . . . from the reference Boltzmann distribution
P(r; λref) = hA(r) e−βU(r;λref)/Z̃A(λref). The ith sampled configura-
tion corresponds to the ith estimate,

a(i) = 1 − e−β(U(r
(i) ;λ)−U(r(i) ;λref)). (24)

It is straightforward to confirm that each estimate a(1), a(2), . . . is
unbiased,

⟨a(i)⟩ = ∫ dr(i) a(i)P(r(i); λref)

= 1 − ∫ dr(i)hA(r)e−βU(r
(i) ;λ)

Z̃A(λref)
= a. (25)

It follows that an unbiased estimate for Z̃(λ)−1 can be constructed by
replacing each instance of a in Eq. (22) by a(1), a(2), etc., as follows:

1̂
Z
∼
A(λ)

= 1
Z̃A(λref)

(1 + a(1)(1 + a(2)(1 +⋯))). (26)

As written, the series would require a to be estimated an infi-
nite number of times. To be practically useful, we must convert the
infinite series into a finite sum, ideally one with few terms. Trun-
cation of the series at finite order, however, would introduce a bias
to the estimate. Like Bhanot and Kennedy’s unbiased estimates of
ex,36,41 Booth constructed an unbiased stochastic truncation from a
“roulette procedure” that randomly chooses when to truncate the
series in Eq. (26).33 We use a similar roulette procedure where sam-
ples a(1), a(2), . . . are generated one by one. After sample a(n) is
generated, it is either incorporated into the nested product or it trig-
gers the termination. Whether to incorporate a(n) is determined by
two factors: a tunable parameter 0 < R < 1 and the running product

Π(n) ≡ ∣a(n)∣
n−1

∏
i=1
∣a(i)∣max[1,

R
Π(i)
]. (27)

If Π(n) < R, then the series is truncated with probability 1 − (Π(n)/R).
In the event of truncation, the estimate is constructed from the first
n − 1 terms as

1̂
Z
∼
A(λ)

= 1
Z̃A(λref)

⎛
⎝

1 +
n−1

∑
i=1

i

∏
j=1

a(j)max[1,
R

Π(j)
]
⎞
⎠

. (28)

Appendix B explicitly shows that this stochastic truncation yields an
unbiased estimate for the reciprocal of the partition function.

D. Sampling configurations from the reference
distribution

In practice, our unbiased estimates a(i) come from a library
of pre-computed configurations r(i), drawn from samples of the
Boltzmann distribution P(r; λref) ∝ e−βU(r;λref). Using a standard
canonical sampling procedure with a fixed reference λref, we store
K independent configurations r(i) along with their respective ref-
erence potential energies U(r(i); λref). These K samples comprise a
library that is generated only once. Every estimate of a is generated
by drawing a configuration uniformly from this library and calculat-
ing a(i) from Eq. (24). Hence, a can be estimated for each new value
of λ using the same pre-sampled reference states.

The effectiveness of the method depends critically on the choice
of the reference parameters λref. Recall that for the series of Eqs. (22)
and (26) to converge, we assumed |a(i)(λ)| < 1 for all i, an assumption
that is guaranteed by choosing a reference with

U(r; λref) < U(r; λ) +
ln 2
β

(29)

for each sampled configuration r. Since the series should con-
verge throughout the design sampling process, we furthermore want
Eq. (29) to hold for all designs λ. The reference energy can be made
sufficiently low in two ways. First, we can seek as λref the parameters
λ that minimize U(r; λ) for all configurations r, but a globally opti-
mal λref may not exist. Indeed, if the minimizing λ depends on the
particular configuration r, it is necessary to sample configurations
according to a shifted reference energy U(r; λref) + U0. In that case,
λref could be any λ (low energy is better), and the constant offset U0
is chosen such that

U0 < min
r
(U(r; λ) −U(r; λref)) +

ln 2
β

. (30)

These conditions on the reference energy ensure series conver-
gence, but the guarantee comes with a computational cost. By shift-
ing to a lower offset energy, the series truncates after more terms, a
trend that is easily rationalized in the U0 → −∞ limit. Then, every
a(n) tends to 1, so Π(n) is very slow to decay below R. Consequently,
the series seldom chooses to terminate. A rapidly truncated conver-
gent series thus demands a reference energy that is as high as possible
without ever violating Eq. (30).

E. Biasing for faster rates with multiple trajectories
Section II A illustrated how to sample in proportion to a tran-

sition rate kAB(λ). Suppose, however, that the vast design space has
a large design entropy. Many designs with slow rates would over-
whelm the probability of sampling one of the comparatively few
designs with fast rates. For the sampling procedure to discover those
designs with anomalously fast transition rates, it generally requires
a stronger bias in favor of fast rates. For example, one could sample
designs in proportion to kAB(λ)L for some L greater than one. If L
is an integer, this more strongly biased distribution can be sampled
in analogy with Sec. II A by making use of L independent reactive
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trajectories,42 collectively sampling the distribution

P(Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ) = 1
N L

L

∏
l=1

hA(xl(0))hB(xl(tobs)), (31)

× e−βH(xl(0);λ)

ZA(λ)
P(Ð→x l∣λ, xl(0)). (32)

Assuming the same timescale separation that led to Eq. (9), inte-
gration over the trajectories indeed leaves the targeted marginal
distribution

P(λ) = ∫ DÐ→x 1 ∫ DÐ→x 2 . . .∫ DÐ→x L P(Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ)

= [ tobs

N
kAB(λ)]

L
. (33)

The multiple-trajectory joint distribution of Eq. (32) can be
sampled with Metropolis–Hastings MCMC by proposing changes
from (Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ) → (Ð→x ′1,Ð→x ′2, . . . ,Ð→x ′L, λ′) according to
some calculable generation probability Pgen. The changes are con-
ditionally accepted with acceptance probability,

Pacc = min[1,
P(Ð→x ′1,Ð→x ′2, . . . ,Ð→x ′L, λ′)
P(Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ)

× Pgen(Ð→x ′1,Ð→x ′2, . . . ,Ð→x ′L, λ′ →Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ)
Pgen(Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ→Ð→x ′1,Ð→x ′2, . . . ,Ð→x ′L, λ′)

⎤⎥⎥⎥⎦
. (34)

Similar to the case of a single trajectory, one finds that the ratio
of probabilities contains problematic ratios of reciprocal partition
functions,

P(Ð→x ′1,Ð→x ′2, . . . ,Ð→x ′L, λ′)
P(Ð→x 1,Ð→x 2, . . . ,Ð→x L, λ)

= ZA(λ′)−L
ZA(λ)−L

×
L

∏
l=1

e−βH(x
′
l (0);λ

′
)

e−βH(xl(0);λ)

×
L

∏
l=1

hA(x′l(0))hB(x′l(tobs))
hA(xl(0))hB(xl(tobs))

P(Ð→x ′l ∣λ′, x′l(0))
P(Ð→x l∣λ, xl(0))

. (35)

As before, we replace the reciprocal partition functions by unbi-
ased estimates. Specifically, ZA(λ)−L is replaced by the product of
L independent estimates of ZA(λ)−1, each computed as described in
Sec. II B,

ZA(λ)−L →
L

∏
l=1

ẐA(λ)−1. (36)

A demonstration that the unbiased estimates may be used in the
acceptance probabilities follows in analogy to Eq. (13). For each of
the L estimates, one introduces a lift to include some noise variables
ηl.

III. RESULTS
To illustrate the design sampling with noisy estimates, we

numerically studied the rate of escape from an energy well as a func-
tion of the well depth ϵ. The potentially high-dimensional design λ

of Sec. II is just the scalar ϵ for this application. The toy problem
was chosen to be sufficiently simple that brute force rate calculations
kAB(ϵ) could also be collected to ensure that the procedure sampled
designs—in this case well depths ϵ—according to P(ϵ) ∝ kAB(ϵ).
Through numerical sampling, we confirmed that use of the noisy
estimates Ẑ

∼
A(ϵ)−1 do not bias the sampling. We further demon-

strate that, however inconvenient to estimate, the partition function
terms cannot be responsibly neglected; doing so yields a notable bias.

The specific toy model is the escape of a particle from a
Lennard-Jones well while evolving with underdamped Langevin
dynamics in three-dimensional space. The energy well takes the
familiar form

U(r; ϵ) = 4ϵ[(σ
r
)

12
− (σ

r
)

6
], (37)

where r is distance from the particle to the origin and σ is the particle
radius. We take the A region to be the bottom of the well, defined by
positions with 0.85 ≤ r/rmin ≤ 1.4, with rmin = 21/6σ being the loca-
tion of the potential energy minimum. The B region is the unbound
state, reached once r exceeds 4σ. At every moment of time, the par-
ticle experiences forces from this potential energy as well as a drag
force and random fluctuating force from the underdamped Langevin
dynamics. Hence,

ṗ(t) = −∇U(r(t); ϵ) − γ
m
p(t) + ξ(t), (38)

where γ is a friction coefficient and ξ is a white noise with ⟨ξ⟩
= 0 and ⟨ξ(t)ξ(t′)⟩ = 2γkBTδ(t − t′). We allow our tunable design
parameter ϵ to vary between 7 kBT and 12 kBT, a parameter regime
chosen to ensure that escape is a rare event. For convenience, we
nondimensionalize the problem by setting σ = m = β = 1 and γ = 0.5.
This system is illustrated in Fig. 1.

We split our results into four parts. First, we consider a joint
Monte Carlo sampling of designs and particle positions to demon-
strate that the noisy estimate for the reciprocal partition function can
be adequately incorporated into a Monte Carlo acceptance ratio. We
next perform the joint sampling of designs and trajectories to extract
the dependence of the rate constant on the well depth in the range
ϵ ∈ [7, 12]. We demonstrate the enhanced preference for faster rate
constants that comes from simultaneously sampling multiple reac-
tive trajectories. Finally, we illustrate the methodology on a more
complex molecular cluster.

A. Monte Carlo sampling with reciprocal partition
function estimates

As detailed in Sec. II B, the Monte Carlo sampling over trajecto-
ries and well depths involves the computation of an acceptance ratio,
Eq. (15), containing Ẑ

∼
A(ϵ)−1. We note, however, that the reciprocal

partition function enters this ratio not because of the trajectory sam-
pling but rather due to the sampling of the initial condition for the
trajectory. To evaluate the consequences of estimating Z̃A(ϵ)−1, we
first chose to study a simpler subproblem: simultaneous sampling of
well depths and initial positions (as opposed to full trajectories).

We constructed MCMC moves that transition from an old
position and well depth, r and ϵ, to a new position and depth, r′ = r
+ Δr and ϵ′ = ϵ + Δϵ. The symmetric proposal is generated by
drawing independent Gaussian variables Δr and Δϵ, each with zero
mean and variance 10−4. When a trial move generated ϵ′ outside
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the range,7,12 the move was rejected. Otherwise, the moves were
accepted in one of three different ways: according to the exact
partition function

P(exact)
acc = min

⎡⎢⎢⎢⎣
1,hA(r′)

Z̃A(ϵ′)−1e−βU(r
′ ;ϵ′)

Z̃A(ϵ)−1e−βU(r;ϵ)
⎤⎥⎥⎥⎦

, (39)

according to the estimated partition function

P(est)
acc = min

⎡⎢⎢⎢⎢⎣
1,hA(r′)

̂Z∼ A(ϵ′)−1e−βU(r
′ ;ϵ′)

Ẑ
∼
A(ϵ)−1e−βU(r;ϵ)

⎤⎥⎥⎥⎥⎦
, (40)

or neglecting the partition function altogether

P(ignored)
acc = min

⎡⎢⎢⎢⎣
1,hA(r′)

e−βU(r
′ ;ϵ′)

e−βU(r;ϵ)
⎤⎥⎥⎥⎦

. (41)

We note that for Eq. (40), one must retain the old estimate for the
reciprocal partition function after a rejection rather than recomput-
ing a new estimate. This need follows from the fact that we formally
consider a random walk through the η coordinates that produced
the noisy estimate, as described in Sec. II B.

Equations (39) and (40) should both sample marginal distri-
butions for ϵ that are uniform, while Eq. (41) samples P(ϵ)∝ ZA(ϵ).

We confirmed these marginal distributions numerically by sampling
particle positions in the Lennard-Jones well, a comparison made
possible by the ease of numerically computing the exact partition
function

Z̃A(ϵ) = 4π∫
1.4rmin

0.85rmin

dr r2e−βU(r;ϵ) (42)

for this toy model, with U(r; ϵ) given by Eq. (37).
Figure 2 gives the joint probability density from sampling in ϵ

and r space using reciprocal partition function estimation [Eq. (40)].
The marginal distributions in ϵ and r are shown along their respec-
tive axes and give comparisons with sampling using the exact parti-
tion function [Eq. (39)] and ignoring the partition function contri-
butions [Eq. (41)]. We can see that using unbiased reciprocal parti-
tion function estimation works well, matching the results obtained
from the exact partition functions. Both the estimated and exact
approaches also result in a uniform marginal distribution across ϵ,
as expected. By carefully constructing an unbiased estimation pro-
cedure, we have recovered the proper sampling without having to
laboriously calculate an exact partition function at every sampled
value of ϵ. The marginal distribution of ϵ also shows the effect of
the reciprocal partition function ratio on the sampling procedure.
By ignoring this ratio, we sample ϵ in proportion to Z̃A(ϵ), which
introduces a bias that prefers higher values of ϵ. The non-uniform
distribution reflects the fact that trajectory sampling would show a

FIG. 2. The joint probability densities of ϵ and r for the sampling procedure described by Eq. (40). Marginal probability densities for ϵ and r are given along their respective
axes from the joint distribution. Marginal densities show data from the sampling procedure using reciprocal partition function estimates [Eq. (40)] (red), the exact partition
function [Eq. (39)] (dashed black), and incorrectly ignoring the reciprocal partition function contributions [Eq. (41)] (dotted black). Distributions were each collected from 5 ×
108 Monte Carlo trial moves, and the estimated reciprocal partition functions were computed with a roulette parameter of R = 0.75 and a reference value of ϵref = 12. Marginal
densities for the estimation procedure and the exact partition function agree well, and the marginal density of ϵ is uniform, as expected. Ignoring the reciprocal partition
function introduces a non-negligible bias; rather than sampling ϵ uniformly, it is sampled in proportion to Z̃A(ϵ).

J. Chem. Phys. 153, 204102 (2020); doi: 10.1063/5.0025358 153, 204102-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

preference for some designs not only because of the propensity to
react but also due to the ease of generating initial configurations.
From Fig. 2, it is clear that this bias can be significant.

Of course to sample the joint distribution in Fig. 2, we need
to generate estimates for the reciprocal partition functions. The first
step in doing so is to choose an appropriate reference ϵref follow-
ing the considerations of Sec. II D. For the range ϵ ∈ [7, 12], a
value of ϵref = 12 gives the lowest energy at any value of r due
to the monotonically decreasing energy of the Lennard-Jones form
with increasing ϵ. There is no need for an offset U0. Using stan-
dard MCMC for fixed ϵref, we generated 10 000 independent sam-
ples of position r and corresponding reference energy U(r; ϵref) to
construct a library. As described in Sec. II D, we generated a(i)

terms in the expansion of Eq. (28) for arbitrary ϵ by uniformly ran-
domly drawing samples from the library and evaluating Eq. (24).
The estimates of Fig. 2 were generated with a roulette parameter of
R = 0.75.

Figure 3(a) shows that the reciprocal partition function remains
unbiased regardless of the choice of R, but that R impacts the esti-
mator’s noise. The figure also highlights that the stochastic trun-
cation of the series expansion is essential and that termination
at a fixed expansion length would yield biased estimates. Like-
wise, the reciprocal of our stochastic series is a biased estimate
of the partition function itself, as shown in Fig. 3(b). This bias is
expected and not problematic; our MCMC scheme required unbi-
ased Z̃−1

A , not unbiased Z̃A. While the procedure formally works
irrespective of R or the distance from the reference potential, the
cost of the estimation procedure varies. Figure 3(c) shows that
decreasing R decreases the probability of truncation, resulting in
a stochastic sum with more terms. A series with more terms is
better converged since it effectively averages over many more val-
ues of a(i), but the decrease in the noise comes at a computational
expense.

Tuning R to select an optimal trade-off between noise and
computational cost is a complicated affair. One advantage of using

estimates to sample is that one can get by with noise, poten-
tially very large noise without introducing bias, suggesting that one
should favor very cheap, noisy estimates. However, very noisy esti-
mates can cause the Markov chain to get stuck in η variables that
produce an overly favorable estimate. Practical implementations
require care—in choosing R, in selecting a reference potential, and
in preventing stuck Markov chains—but our calculations serve as a
demonstration of the principle that the noisy estimates of reciprocal
partition functions can be computed and productively employed.

B. Simultaneously sampling trajectory space
and design space

Having demonstrated the ability to sample the design and the
initial condition, we now want to bias designs so as to favor fast
rates. Section II laid out two routes to sample P(ϵ) ∝ kAB(ϵ). If we
could compute Z̃−1

A exactly, we could sample designs and trajecto-
ries according to Eq. (7) with a MCMC procedure that updates a
trajectoryÐ→x and a design ϵ. Otherwise, we could also generate esti-
mates for the reciprocal of the partition function to sample Eq. (13).
As in Sec. III A, we consider the Lennard-Jones escape problem
because it is reasonable to implement both routes—using exact
and estimated reciprocal partition functions—as a demonstration of
validity.

Both routes require a random generation of new designs and
trajectories, Pgen(Ð→x , ϵ → Ð→x ′, ϵ′). We make these proposals in two
steps. First, we symmetrically generate ϵ′ = ϵ + Δϵ as in Sec. III A.
Next, we use ϵ′ to generate a new trajectory via a “shooting move”
that re-evolves the stochastic dynamics forward and backward in
time from a randomly selected time.3 The combined move is con-
ditionally accepted according to Eq. (11) (exact) or to Eq. (14)
(est), both of which require an explicit calculation of the ratio of
generation probabilities, as well as a measure of the Boltzmann
probability of the new trajectory’s initial condition. That Boltzmann

FIG. 3. (a) Unbiased estimates of the reciprocal partition function ̂Z
∼
A(ϵ)−1. (b) Biased estimates of the partition function Z̃A(ϵ) constructed by taking the reciprocal of

̂Z
∼
A(ϵ)−1. Both estimates are scaled by the value of the exact partition function at the reference ϵref = 12, and the exact partition function is given as a thick dashed black

line. (c) The series length when using the Booth method as a function of the well depth ϵ. Different colors represent different roulette parameters with the solid lines giving the
average value and the shaded areas showing the standard deviation. To emphasize the importance of stochastic truncation, biased results are shown for series truncated at
fixed lengths of 30 and 127 terms, plotted as dashed-dotted and dotted lines, respectively. Average estimates of the reciprocal partition function are indistinguishable from
the exact result in (a), demonstrating the unbiased nature of the Booth estimation procedure. The average estimate values only approach the exact values in the limit R→ 0
in (b), showing that the reciprocal of our unbiased estimates for Z̃−1

A does not yield an unbiased estimate of Z̃A. From (c), we can see that the cost of the estimation method
increases as R decreases and also as the value of ϵ strays further from the reference ϵref = 12.
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probability of the initial condition is handled as in Sec. III A—we
either compute it exactly (exact) or we generate an unbiased estimate
(est). Unlike Sec. III A, we now must compute the ratio of the trajec-
tory generation probabilities, a ratio that can be computed explicitly
in terms of the random noise terms for the stochastic dynamics.
Appendix A provides details of the trajectory generation probabil-
ity based on the underdamped Langevin integrator of Athènes and
Adjanor.43

To confirm that the trajectory sampling approach yields the
rate of unbinding, we additionally computed the rate constant as a
function of well depth kAB(ϵ) by brute force. For those brute force
calculations, we used MCMC to initialize the Lennard-Jones par-
ticle’s position and momentum from the equilibrium Boltzmann
distribution and then propagated the trajectory43 with a time step of
Δt = 0.005. Once the system reached B, we recorded the elapsed time
τ and repeated the procedure. In total, we sampled 106 realizations
of τ and calculated an estimate of kAB as 1/⟨τ⟩. In Fig. 4, we overlaid
the rate constant data on top of the marginal distributions of ϵ taken
from trajectory sampling.

Figure 4 shows that using our reciprocal partition function esti-
mation procedure works well as it matches the data collected when
using an exact partition function. Furthermore, by overlaying the
rate constant data, we show that we are indeed sampling ϵ in propor-
tion to the rate constant, P(ϵ) ∝ kAB(ϵ). Consequently, the random
walkers executing both the exact and estimation approaches spend
most of their time sampling designs with fast rates ϵ ≈ 7. In contrast,
the random walker that ignores the partition function factor in its
acceptance ratio spends most of its time sampling the slow designs,
those with ϵ ≈ 12. These data confirm that the partition function
term can be very significant in rate design problems and that it
can be computed approximately in a manner that avoids sampling
bias.

FIG. 4. (Left, black axis) Marginal probability densities of ϵ from simultaneous sam-
pling of the design space ϵ and of unbinding trajectories. Sampling using the exact
reciprocal partition functions [Eq. (11)] gives the dashed black curve and sam-
pling with estimated reciprocal partition functions [Eq. (14)] gives the solid red
curve. (Right, blue axis) Brute force estimations of the average rate constants
of unbinding kAB(ϵ) as a function of ϵ given as blue squares. Each trajectory
sampling procedure used 5 × 108 trial attempts, and the estimation procedure
used a roulette parameter R = 0.75 and a reference value of ϵref = 12. Each rate
calculation consisted of 106 independent trials. To overlay P(ϵ) and kAB(ϵ), the
proportionality constant was fitted by least squares regression.

C. Sampling with stronger bias for fast rates
As discussed in Sec. II E, visiting designs in proportion to

their rates is a relatively weak preference in favor of fast rates. In
high-dimensional design spaces, the design entropy overwhelms that
weak preference, so we sought a way to turn up the bias by sampling
P(ϵ) ∝ k(ϵ)L with L independent reactive trajectories. Implement-
ing this scheme follows quite directly from Sec. III B. The principal
difference is that a MC move in ϵ and Ð→x now becomes a move
in ϵ,Ð→x 1,Ð→x 2, . . .Ð→x L. Specific computational details are discussed in
Appendix A.

Figure 5 summarizes the result of sampling with L = 1, 2, and
3. The fastest rate of escape occurs with the shallowest allowed well,
ϵ = 7, but with L = 1, there is still appreciable probability of see-
ing ϵ fluctuate to suboptimal values above 9 or 10. By increasing
L, the density near the optimal ϵ grows. Figure 5(a) shows that
sampling using the estimated reciprocal partition functions remains
unbiased for L > 1. The more stringent confirmation that P(ϵ)
∝ k(ϵ)L, or equivalently that log P(ϵ) vs log k(ϵ) has slope L, is plotted
in Figs. 5(b)–5(d).

D. A more complex example
While the Lennard-Jones unbinding system is useful for

demonstrating correctness, the power of the sampling approach is
most applicable to more complex problems with high-dimensional
state spaces and design spaces. To illustrate such an application,
we introduce a five-particle system shown in Fig. 6 that consists of
one particle metastably trapped inside a tetrahedron of four other
particles. Given enough time, the trapped particle escapes from the
tetrahedron with a rate constant that depends on the various inter-
actions between particles. Whereas the Lennard-Jones unbinding
example supported a single trivial reaction pathway, competing reac-
tion pathways are possible with multiple particles. In this respect,
this toy model serves as a more realistic example that builds toward
chemical applications.

In addition to increasing the dimensionality of the state space,
we now consider a three-dimensional design space that regulates
interparticle interactions. One of those design degrees of freedom
adjusts a spring constant k for a harmonic potential acting between
pairs of the tetrahedron particles. When separated by a distance
rij, this pair potential contributes Uharmonic(rij; k) = 1

2kr
2
ij to the

energy. All five particles additionally interact through modified
Lennard-Jones potentials,

ULJ(rij; ϵR, ϵA) = 4ϵR(
σij
rij
)

12

− 4ϵA(
σij
rij
)

6

. (43)

Here, σij is the mean of the Lennard-Jones radii of particles i and j.
We call the potentials modified Lennard-Jones potentials because we
allow attractive and repulsive interactions to be, respectively, tuned
via ϵA and ϵR. In principle, those ϵA and ϵR parameters could be dis-
tinct for each pairwise interaction, but we wanted to limit to a three-
dimensional design space in order to visually compare with brute
force calculations. Thus, we held fixed ϵA = 0 and ϵR = 10 between
tetrahedron particles and took ϵA and ϵR between the trapped par-
ticle and each tetrahedron particle to be the two remaining design
parameters. All other parameters were held fixed: kBT = 1, and
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FIG. 5. (a) Marginal probability densities of ϵ from joint sampling of the design space ϵ and of L independent unbinding trajectories, as described in Sec. II E. Account-
ing for the reciprocal partition function exactly is shown in black dashed line, and using the reciprocal partition function estimations is shown in red solid line. (b) The
marginal probability densities from the estimation procedure in (a) are plotted against the brute force calculated rate constants (blue squares in Fig. 4) on a log–log
plot for (b) L = 1, (c) L = 2, and (d) L = 3. Power law scalings are provided in solid black line as reference. The brute force rate constants were fitted to a high-
order polynomial for interpolation purposes. Each trajectory sampling procedure used 5 × 108 trial attempts, and the estimates used a roulette parameter of R = 0.75
and a reference value of ϵref = 12. From (a), we can see that increasing the number of independent trajectories in the sampling creates a stronger preference for
the fastest unbinding rate, which occurs at ϵ = 7. From (b), (c), and (d), we conclude that we are sampling according to P(ϵ) ∝ kAB(ϵ)L. The power law scaling at
low values of kAB (high values of ϵ) is noisy for larger L values because slow values of kAB are rendered particularly rare by using a large number of independent
trajectories.

γ = 0.5, Δt = 0.005, unit mass for all particles, unit radii for all
tetrahedron particles, and a trapped particle radius of 0.45. The
design λ = {k, ϵA, ϵR} was allowed to sample, restricted to the
domain with ϵR ∈ [1, 1.15], ϵA ∈ [0, 0.15], and k ∈ [119, 120].
Trial moves in parameter space were generated via ϵ′A = ϵA + ΔϵA,
ϵ′R = ϵR + ΔϵR, and k′ = k + Δk, where ΔϵA, ΔϵR, and Δk were
drawn from Gaussian distributions with 0 mean and variances of
10−4, 10−4, and 10−2, respectively. The criteria for detecting reac-
tant and product states were based on the distance between the
center of mass of the tetrahedron and the trapped particle. When
that distance is below 0.25, the configuration is in the reactant state
A, and when it exceeds 1.1, the configuration is in the product
state B.

Figure 6 demonstrates the merits of the Monte Carlo method-
ology for this three-dimensional design problem. The brute force
rate calculations of Fig. 6(b) reveal relative rates between designs,
which are essentially indistinguishable from the design sampling of
Fig. 6(c). In both cases, the rate of the trapped particle’s escape is

maximized when the tetrahedron is the least rigid (low k) and when
the interactions between the tetrahedron particles and the trapped
particle are most repulsive and least attractive (high ϵR, low ϵA).
The proportionality between the brute force rate and design sam-
pling is made quantitative by comparing log P(λ) with log kAB(λ) in
Fig. 6(d).

The computational benefit of the sampling procedure becomes
apparent in this higher-dimensional parameter space. Figure 6(e)
makes this benefit clear by comparing run times for computing rates
in d dimensions with d = 0 corresponding to a single design, d = 1
corresponding to λ = {ϵA}, d = 2 corresponding to λ = {ϵA, ϵR},
and d = 3 corresponding to λ = {ϵA, ϵR, k}. The cost for perform-
ing calculation on a grid like this scales exponentially, whereas the
sampling procedure’s cost depends only on the number of sampled
designs, not the design dimensionality. Because of the poor scal-
ing of grids, the sampling procedure eventually wins out as dimen-
sionality increases, a crossover that occurred after d = 2 for our
implementation.
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FIG. 6. (a) A tetrahedral cluster consisting of five Lennard-Jones particles releases the trapped red particle from its blue cage with a rate that depends on three parameters
of the pairwise interactions. (b) Brute force rate calculations for a grid of designs, estimated as in the Lennard-Jones unbinding example as the reciprocal of the average
escape time of 2 × 104 independent underdamped Langevin trajectories. (c) Binned probability density for design sampling, revealing relative rate constants that match the
brute force calculation. Design sampling utilized trajectories with M = 1000 time steps, reciprocal partition function parameter R = 0.75, and reference design ϵA = 0.15,
ϵR = 1, and k = 119 that was sampled by 106 reference configurations. Trajectories were sampled as described in Appendix A. (d) A quantitative comparison of the brute force
rates and the sampled designs. As in Fig. 5(b), the unit slope on the log–log scale reflects equality up to a proportionality constant. (e) Sampled designs can be generated
with a cost independent of design dimensionality d, while brute force rate computations scale exponentially with d. Although we never aimed to fully optimize the sampling
strategy, the runtime trun to generate (d) was already below that of (c) for the three-dimensional design problem.

IV. DISCUSSION

In this manuscript, we have demonstrated how to sample
design spaces with a preference for fast reaction rates. Our central
focus has been the development of a practical Monte Carlo strat-
egy that samples p(λ) ∝ kAB(λ)L without bias. Our success study-
ing toy models demands a level-headed assessment of whether the
methodology will scale to more complex problems with still higher

dimensional λ. As a Monte Carlo strategy, there is reason to believe
that high-dimensional spaces could be accessible, but here we must
highlight two reasons for caution.

One concern is that our unbiased estimates of ZA(λ)−1 came
from a comparison against a single fixed reference with energy
U(r; λref) + U0. Like the estimation of free energy differences from
importance sampled configurations, efficient computations rely on
good overlap with the reference distribution. In our case, we require
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the typical r sampled by U(r; λ) to be similar to those typically
sampled by the reference potential. Adequate overlap was simple to
achieve in the toy problems due to our focus on d ≤ 3 design dimen-
sions. We expect greater difficulty in higher dimensions, where it
may be necessary to generate unbiased estimates of ZA(λ)−1 using
samples from multiple different reference potentials. We expect that
the multistate Bennett acceptance ratio method for unbiased free
energy calculations likely guides the way toward simultaneously
weighting multiple references.44

Another concern one might raise is that the sampling proce-
dure directly provides an ensemble of decent designs rather than
a single optimal design, yet often it is this optimal design that is
desired. The situation is analogous with a finite-temperature canon-
ical ensemble returning configurations that differ from the energy
minima. To discover those minima, it is necessary to quench by
progressively lowering the temperature. For the design sampling
problem we showed that quench could be achieved by increasing L,
the number of random walkers. However, the principal virtue of the
method is that it allows one to importance sample design space, not
just perform quenches. This importance sampling promises insight
going beyond the identification of an optimal design. For exam-
ple, it should be possible to assess how many near-optimal designs
exist and by how much their performance erodes relative to the
optimum.
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APPENDIX A: GENERATION OF NEW TRAJECTORIES
The Monte Carlo procedure of Sec. II B expresses the prob-

ability of accepting a MC move in terms of a ratio of generation
probabilities Pgen(Ð→x , λ → Ð→x ′, λ′)/Pgen(Ð→x ′, λ′ → Ð→x , λ). Here, we
discuss the details of the transition path sampling moves that allow
us to compute the acceptance ratio and efficiently sample the trajec-
tory space. We focus on sampling stochastic dynamics, specifically
discretized underdamped Langevin dynamics, in which case shoot-
ing moves combined with the strategy of Crooks is effective.46 The
trajectory Ð→x consists of M + 1 snapshots of phase space, x = {r, p},
separated by time step Δt. It is convenient to have a compact nota-
tion, so the jth snapshot occurring at time jΔt, x(jΔt), will simply be
written as xj. The trajectoryÐ→x is defined either by this set {xj} for all
j = 0, . . ., M or alternatively by the initial condition x0 and the set of
all random numbers that cause the stochastic integrator to visit the
subsequent points in phase space.

In Sec. III B, we employed the Langevin integrator of Athènes
and Adjanor,43 in which case each degree of freedom requires two
Gaussian random variables (noises) to be drawn for each time step.
Similar to the velocity Verlet algorithm, the position coordinates
defined at integer time steps are computed using velocities that are
defined at integer and half-integer times. The two noises for each

degree of freedom can also be associated with fractional time steps,
so the update of particle i can be computed as

pj+
1
2

i = p j
i e
−

γΔt
2mi + f ji

Δt
2

+ ξj+
1
2

i ,

rj+1
i = r

j
i + pj+

1
2

i
Δt
mi

,

pj+1
i = [p

j+ 1
2

i + fj+1
i

Δt
2
]e−

γΔt
2mi + ξj+1

i ,

(A1)

where the Gaussian white noises ξj+
1
2

i and ξj+1
i both have mean

zero and variance mi(1 − e−
γΔt
mi )/β. The trajectory can then be

expressed as Ð→x ≡ {x(0), ξ
1
2 , ξ1, . . . , ξj+

1
2 , ξj+1, . . . , ξM−

1
2 , ξM}. We

can also define the time-reversed trajectory as ←Ðx
≡ {x(MΔt), ξ̃M , ξ̃

M− 1
2 , . . . , ξ̃

j+1
, ξ̃

j+ 1
2 , . . . , ξ̃

1
, ξ̃

1
2 }, where ξ̃ are the

random numbers that would give a reversed trajectory through
phase space starting from the endpoint with reversed momenta.

The MC proposalÐ→x , λ→Ð→x ′, λ′ is thus constructed as follows.
First, we generate λ → λ′ symmetrically, and if a λ′ value is cho-
sen outside the desired domain, then the entire move is rejected.
Next, we randomly choose a “shooting point” m ∈ [0, M] along
the trajectory with uniform probability. From this point, we mod-
ify the time-reversed random numbers from that point backward to

the beginning of the trajectory, ξ̃
j+ 1

2 → ξ̃
′j+ 1

2 and ξ̃
j+1 → ξ̃

′j+1
for

j = 0, 1, . . ., m − 1. Similarly, we modify the forward time random
numbers from that point to the end of the trajectory, ξj+

1
2 → ξ′j+

1
2

and ξj+1 → ξ′j+1 for j = m, m + 1, . . ., M − 1. We generate trial
move noises by a linear combination of the old noise and a new one,
ξ′ = αξ +

√
1 − α2ζ and ξ̃

′ = αξ̃ +
√

1 − α2ζ̃34,47. Here, ζ and ζ̃ are
the new noises, drawn from the same zero mean, mi(1 − e−

γΔt
mi )/β

variance Gaussian distribution that the Langevin integrator noises
naturally sample. The parameter α allows us to control the decor-
relation between the current and trial trajectory. Starting from the
random point m, we integrate the trajectories backward in time
using the proposed backward random numbers ξ̃

′

and forward in
time using the proposed forward random numbers ξ′ to generate the
trial trajectory Ð→x ′. The resulting trajectory can then be converted
to its equivalent complete forward and reverse time representations
as random numbers, ξ′ and ξ̃

′

, respectively, using the form of the
integrator in Eq. (A1).

The reversed proposal move, Ð→x ′, λ′ → Ð→x , λ, occurs when
λ′ → λ is generated, the same shooting point is chosen, and ζ′

= (ξ − αξ′)/
√

1 − α2 and ζ̃
′ = (ξ̃ − αξ̃′)/

√
1 − α2 are chosen from

a Gaussian distribution to map from ξ′ back to ξ. The relative
probability of the forward move to the reverse is thus

Pgen(Ð→x , λ→Ð→x ′, λ′)
Pgen(Ð→x ′, λ′ →Ð→x , λ)

= exp
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, (A2)
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where mi is the mass of particle i. Although this ratio appears to
be cumbersome, it is straightforward to compute in terms of all of
the noise variables ξ and ξ̃, and it is then used in the acceptance
probabilities of Eqs. (11) and (14).

Those acceptance probabilities can be further simplified by
recognizing a cancellation in the product of Eq. (A2) and the
P(Ð→x ′∣λ′, x′(0))/P(Ð→x ∣λ, x(0)) term of Eqs. (12) and (15). For exam-
ple, after some algebra, Eq. (11) becomes

Pacc = min

⎡⎢⎢⎢⎢⎢⎢⎣
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× exp
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⎤⎥⎥⎥⎥⎥⎥⎦

. (A3)

After the algebraic simplification, only contributions from the
first m − 1 steps of the trajectory remain in Eq. (A3). Even this
simplified expression looks daunting, but is easily computed by stor-
ing the random numbers of the current and trial trajectories. The
long sum of squares of ξ terms has the physical interpretation of
a heat flow between the system and the thermostat.43 We want to
weigh the trajectories based on their probability of occurring from
forward-time integration, but we generated a portion of the trajec-
tory (j = 0 to j = m − 1) from reversed-time integration. To compute
that trajectory’s likelihood in the forward-time trajectory ensem-
ble, we must reweight by an exponential of the heat. We also note
that because trial trajectories are always generated from previ-
ous successful trajectories, the terms hA(x(0)) and hB(x(tobs)) are
always 1.

For the simple Lennard-Jones binding system of Secs. III B
and III C, we used α = 0.99 and M = 1000 with a time step of Δt
= 0.005 for an observation time of tobs = MΔt = 5. For the particle
escaping from a tetrahedral cage of Sec. III D, we used α = 0.9 and
M = 1000, again with a time step of Δt = 0.005 for an observation
time of tobs = 5. For both systems, we built an initial trajectory by
interpolating a starting state at the potential energy minima with
Boltzmann momenta and an ending state just inside our respective
definitions of the product state. To build a starting trajectory, one
could run natural dynamics with an integrator until a suitable tra-
jectory is isolated or do linear interpolation between a starting and
ending point, as we have done. This linear interpolation leads to
an unphysical starting trajectory, but sampling quickly moves away
from it to more natural trajectories.

When sampling with multiple independent trajectories in order
to bias more severely toward faster rates, our overall acceptance
ratio is a product of individual ratios with the form of Eq. (A3). For
example, when the exact partition function is known, the acceptance
probability using L trajectoriesÐ→x l with l = 1, 2, . . ., L is

Pacc = min

⎡⎢⎢⎢⎢⎢⎢⎣
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∏
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. (A4)

When those partition functions are not known, they must be
estimated as discussed in Sec. II E. In either case, the L trajectories
share the same length and parameter set λ, but they vary in their
independent starting configurations and in their noises ξl.

APPENDIX B: ROULETTE PROCEDURE FOR
PRODUCING UNBIASED SERIES ESTIMATES

To obtain unbiased estimates of the partition function, we must
truncate the infinite series

S = 1 + a(1)(1 + a(2)(1 +⋯)) = 1 +
∞

∑
i=1

i

∏
j=1

a(j) (B1)

using a roulette procedure, adapted from Ref. 33. We introduce a
roulette parameter R and calculate individual values of a(n) sequen-
tially, as described in Sec. II C. For the nth term in the expansion,
if the running product Π(n) of Eq. (27) is less than the parameter R,
then a roulette game is played with the series. The series will con-
tinue with survival probability q(n) = Π(n)/R and truncate with prob-
ability 1 − q(n). If the series continues, then we scale a(n) by the sur-
vival probability q(n) and continue the procedure for sample n + 1.
If the series truncates, then a(n) → 0 and the estimate of the series is
complete. Alternatively, when the running product is not less than
R, the series continues without scaling a(n). We compactly express
the various cases by noting that sample n survives with probability
q(n) = min[1, Π(n)/R] in which case it contributes the scaled contri-
bution a(n) max[1, R/Π(n)].

As stated in the main text, the threshold for stochastic trun-
cation after term n, Π(n), is computed recursively as the running
product of the absolute value of these scaled contributions,

Π(n) = ∣a(n)∣
n−1

∏
i=1
∣a(i)∣max[1,

R
Π(i)
], (B2)

where Π(1) = ∣a(1)∣. Since a(n) values can be scaled throughout the

procedure and because a(n) = 0 if the series is truncated at the nth
term, the infinite series (B1) is replaced by

S(n) = 1 +
n−1

∑
i=1

i

∏
j=1

a(j)max[1,
R

Π(j)
]. (B3)

We now show that the scaling of terms, which up to now
was introduced in an ad hoc manner, was constructed such that
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the expectation value of the truncated sum will exactly equal the
expected value of the infinite sum. Note that the expected value of the
truncated series can be expressed as the sum over n of the probability

of reaching the nth term times the value of the truncated sum S(n).
The algebra of that expectation value simplifies due to telescoping
sums to give

⟨S⟩ = (1 − q(1))S(1) + (1 − q(2))q(1)S(2) + (1 − q(3))q(2)q(1)S(3) +⋯

= (1 − q(1)) + (1 − q(2))q(1)(1 + a(1)max[1,
R

Π(1)
])

+ (1 − q(3))q(1)q(2)(1 + a(1)max[1,
R

Π(1)
] + a(1)a(2)max[1,

R
Π(1)
]max[1,

R
Π(2)
]) +⋯

= 1 + q(1)a(1)max[1,
R

Π(1)
] + q(1)q(2)a(1)a(2)max[1,

R
Π(1)
]max[1,

R
Π(2)
] +⋯

= 1 +
∞

∑
i=1

i

∏
j=1

a(j)min[1,
Π(j)

R
]max[1,

R
Π(j)
]

= 1 +
∞

∑
i=1

i

∏
j=1

a(j). (B4)

The final equality follows because R > 0, Π(i) > 0, and for positive
x, min[1, x] max[1, x−1] = 1. Consequently, we see that the expecta-
tion value of the truncated sums [Eq. (B4)] equals that of the infinite
sum [Eq. (B1)]. In other words, the stochastic truncation scheme is
unbiased. We note that the roulette procedure we have described
is not a unique way to generate an unbiased stochastic truncation. It
may be possible to design alternative roulette games that give a better
trade-off between truncation speed and estimate noise.
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