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Abstract.  Systems driven away from thermal equilibrium constantly deliver 
entropy to their environment. Determining this entropy production requires 
detailed information about the system’s internal states and dynamics. However, 
in most practical scenarios, only a part of a complex experimental system 
is accessible to an external observer. In order to address this challenge, two 
notions of partial entropy production have been introduced in the literature 
as a way to assign an entropy production to an observed subsystem: one due 
to Shiraishi and Sagawa (2015 Phys. Rev. E 91 012130) and another due to 
Polettini and Esposito (2017 arXiv:1703.05715). We show that although both 
of these schemes provide a lower bound on the total entropy production, 
the latter—which utilizes an eective thermodynamics description—gives a 
better estimate of the total dissipation. Using this eective thermodynamic 
framework, we establish a partitioning of the total entropy production into 
two contributions that individually verify integral fluctuation theorems: an 
observable partial entropy production and a hidden entropy production assigned 
to the unobserved subsystem. Our results oer broad implications for both 
theoretical and empirical systems when only partial information is available.

Keywords: fluctuation phenomena, stochastic processes

G Bisker et al

Hierarchical bounds on entropy production inferred from partial information

Printed in the UK

093210

JSMTC6

© 2017 IOP Publishing Ltd and SISSA Medialab srl

2017

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/aa8c0d

PAPER: Classical statistical mechanics, equilibrium and non-equilibrium

9

Journal of Statistical Mechanics: Theory and Experiment

© 2017 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

2017

1742-5468/17/093210+22$33.00

mailto:bisker@mit.edu
stacks.iop.org/JSTAT/2017/093210
https://doi.org/10.1088/1742-5468/aa8c0d
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/aa8c0d&domain=pdf&date_stamp=2017-09-28
publisher-id
doi


Hierarchical bounds on entropy production inferred from partial information

2https://doi.org/10.1088/1742-5468/aa8c0d

J. S
tat. M

ech. (2017) 093210

Contents

1.  Introduction	 3

2.  Setup	 4

2.1.  Model system.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.  Fluctuation theorems from auxiliary dynamics. . . . . . . . . . . . . . . . . . 5

3.  Partial entropy production	 6

3.1.  Passive partial entropy production.. . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.  Informed partial entropy production.. . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.  Entropy production decomposition	 9

4.1.  Passive partial entropy production.. . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.  Informed partial entropy production.. . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.  Entropy production hierarchy	 12

6.  Partial information can be complete	 13

7.  Time-dependent partial entropy production	 14

8.  Numerical simulations	 15

9.  Discussion	 16

Acknowledgments	 17

Appendix A. Full derivation of the partial entropy fluctuation  
theorems	 18

A.1.  Passive partial entropy production. . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2.  Informed partial entropy production. . . . . . . . . . . . . . . . . . . . . . . . 18

Appendix B. Proof of the derivation of the stalling distribution	 19

Appendix C. Full derivation of the passive hidden entropy  
production fluctuation theorem	 20

Appendix D. Full derivation of the entropy production  
decomposition	 20

D.1.  Passive partial entropy production. . . . . . . . . . . . . . . . . . . . . . . . . 20

D.2.  Informed partial entropy production. . . . . . . . . . . . . . . . . . . . . . . . 21

References	 21

https://doi.org/10.1088/1742-5468/aa8c0d


Hierarchical bounds on entropy production inferred from partial information

3https://doi.org/10.1088/1742-5468/aa8c0d

J. S
tat. M

ech. (2017) 093210

1.  Introduction

Stochastic thermodynamics has refined our understanding of dissipation at the meso-
scale by unraveling the thermodynamic content of fluctuations [1, 2]. As the dissipation 
and its fluctuations are a central object of the theory, their calculation and measure-
ment is paramount. However, determining the total dissipation requires one to care-
fully track in full detail a system’s mesoscopic dynamics, which may not always be 
possible: experiments may only be able to resolve a subset of the degrees of freedom 
[3, 4], or calculations may be impractical for systems with many internal states [5]. 
Thus, a consistent approach for treating the fluctuating entropy production σ with only 
partial information is a necessary aspect for any useful nonequilibrium thermodynamic 
framework.

One could imagine two notions of partial information. The first utilizes coarse grain-
ing, where several states are clumped together or traced out; thereby, obscuring any 
internal dissipation. Such a framework has been studied extensively from the point of 
view of stochastic thermodynamics, both theoretically [6–16, 17] and experimentally 
[3, 4]. The second notion, and the one we consider here, is that the observer has access 
to only a subset of system states; the rest are hidden or masked. Having this point 
of view, clearly distinguishes between the observed part of the system and its hidden 
counterpart, inviting the challenge of decomposing the total entropy production into 
partial entropy productions for both subsystems.

When the observer only has access to a subset of states, two approaches to assign-
ing fluctuating partial entropy production σpart have been introduced in the literature, 
both of which verify fluctuation theorems. The first, due to Shiraishi and Sagawa  
[18–20] (see also [21]), was developed in part to provide a fluctuating counterpart to 
the thermodynamics of continuous information flow [22–26]. A similar construction was 
also proposed by Hartich, Barato and Seifert [27] in the context of bipartite systems. 
The distinguishing features here are that the partial system entropy is inferred from a 
passive observation of a subsystem and that the true thermodynamic force is utilized. 
As such, we will refer to this approach as the passive partial entropy production to 
emphasize that the observer does not need to manipulate the system in this framework. 
By contrast, Polettini and Esposito recently suggested an alternative approach for 
assigning partial entropy production, which incorporates an eective thermodynamic 
force at the cost of demanding that the observer has control over the observed dynam-
ics [28]. As this version requires additional information regarding the eect of external 
control parameters on the dynamics, we refer to this construction as the informed par-
tial entropy production.

In this article, we discuss both the passive and informed partial entropy produc-
tion approaches from a unifying perspective, provide insights and intuition, as well as 
extend the current understanding of these frameworks. First, we show that both partial 
entropy productions naturally lead to a decomposition of the total dissipation σ into 
two positive fluctuating pieces, as

σ = σpart + σcomp,� (1)
where each contribution—the partial entropy production σpart and its complement 
σcomp—individually satisfy an integral fluctuation theorem

https://doi.org/10.1088/1742-5468/aa8c0d
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〈e−σpart〉 = 1, 〈e−σcomp〉 = 1,� (2)

and as such are individually positive [29],

〈σpart〉 � 1, 〈σcomp〉 � 1.� (3)
Shiraishi and Sagawa proved these relationships quite generally for the passive partial 
entropy production [18], whereas here, we develop this decomposition for the informed 
partial entropy production of Polettini and Esposito, both for stationary nonequilib-
rium steady states as well as an extended version for transient driven dynamics. With 
these tools in hand, we then show that owing to the extra physical information incor-
porated in the informed partial entropy production, it is always larger on average than 
the passive partial entropy production, demonstrating a precise hierarchy in partial 
measures of entropy production.

The manuscript is organized as follows: in section 2, we lay the foundations for our 
model system, which is a continuous-time Markov jump process on a network of meso-
scopic states, as well as a general derivation of the fluctuation theorem for the total 
entropy production. We then introduce the notion of partial entropy production in 
section 3 and discuss the two approaches. Subsequently, we derive the partial entropy 
production for the hidden part of the dynamics in section 4, where we demonstrate 
that the total entropy production can be decomposed into two positive contributions 
corresponding to the observed and hidden parts. In section 5, we compare the pas-
sive and informed partial entropy productions to prove the hierarchical order between 
them. The advantage of the informed partial entropy production framework is further 
demonstrated in section 6, where we show that for a unicycle network it reproduces 
the total entropy production exactly. As a final bit of analysis, we extend the informed 
partial entropy production approach to time-dependent driven dynamics in section 7. 
In section 8, we present a numerical case study to illustrate our main results, and we 
conclude with a thorough discussion and outlook in section 9. Supplementary calcul
ations can be found in the appendices.

2. Setup

We begin our analysis by first describing the dynamics and thermodynamics of our 
system of interest. With the context fixed, we then introduce fluctuation theorems from 
a general perspective as symmetries of trajectory observables obtained from logratios 
of trajectory probabilities. This will set the stage for our comparison of partial entropy 
productions as trajectory observables.

2.1. Model system

We consider a mesoscopic system modeled as a continuous-time Markov jump process 
over a finite set of states {1, ..., K}. The probability density p(t) = { pi(t)} then obeys 
the Master Equation

ṗ(t) = Wp(t),� (4)

https://doi.org/10.1088/1742-5468/aa8c0d
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where the transition rate matrix

Wij =

{
wij i �= j

−λi i = j
,� (5)

encodes the rates wij to jump from j → i on the o-diagonal elements and the escape 

rates λj =
∑

i �=j wij on the diagonal elements, which enforce probability conservation. 
As such, we can identify the (probability) current flowing from j → i as

Jij(t) = wijpj(t)− wjipi(t).� (6)
We assume that each transition is reversible, that is wij > 0 only when wji > 0, and 
that there is a unique stationary state π = {πi} satisfying Wπ = 0, with stationary 
current Jπ

ij = wijπj − wjiπi.
For a thermodynamically consistent description, we assume that local detailed bal-

ance holds, so that every transition is accompanied by a fixed entropy flow into the 
environment. The second law of thermodynamics then dictates that the steady-state 
entropy production rate is positive [2, 30]

Σ =
∑
i<j

Jπ
ij ln

wijπj

wjiπi

≡
∑
i<j

Jπ
ijFij � 0,

� (7)

which defines the steady-state thermodynamic force, or anity, F that measures the 
entropy flow into the thermal reservoir mediating the transition. Clearly, observing 
this entropy production requires one to be able to monitor every transition in order 
to determine every term in the sum. The partial entropy productions that we discuss, 
however, circumvent this requirement. In order to lay the foundations for this frame-
work, let us now turn to fluctuation theorems and their relation to entropy production.

2.2. Fluctuation theorems from auxiliary dynamics

Fluctuation theorems deal with symmetries of certain trajectory observables and are 
generically derived by comparing the probability to observe a mesoscopic trajectory 
and its time reverse in a possibly distinct auxiliary dynamics [29, 31–35]. The great 
freedom in this construction, which has led to the proliferation of fluctuation theorems, 
is that we may choose any generator W̄ for the auxiliary Markov process. Some choices 
turn out to have clear and interesting physical interpretations, such as the two that 
give rise to the partial entropy productions, which are the focus of this paper.

Specifically, for a fixed observation time T, let us denote a trajectory by 
γ = {(i0, τ0), . . . , (iN , τN)}—which is a chronological sequence of the N states {i0, . . . , iN} 
visited during the trajectory and their wait times {τ0, . . . , τN}, with 

∑
i τi = T—and its 

time reverse by γ̃ = {(iN , τN), . . . , (i0, τ0)}. The probability P [γ] of observing γ is thus [2]

P [γ] = e−τNλiN

N−1∏
n=0

[
win+1,ine

−τnλin
]
πi0 ,� (8)

where the initial state is sampled from the steady state distribution π. Then we can 
construct a trajectory observable from the ratio of P [γ] and the probability P̄ [γ̃] of 
observing the reverse trajectory γ̃ in an auxiliary dynamics [33],

https://doi.org/10.1088/1742-5468/aa8c0d
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R[γ] = ln
P [γ]

P̄ [γ̃]

= ln
πi0

πiN

+
N−1∑
n=0

ln
win+1,in

w̄in,in+1

−
N∑

n=0

(λin − λ̄in)τn.
�

(9)

Being a logratio of probabilities, R immediately satisfies an integral fluctuation theo-
rem 〈e−R〉 = 1, as can be easily checked [29].

A particularly important example of a trajectory observable is the fluctuating 
steady-state entropy production [2]

σ = ln
πi0

πiN

+
N−1∑
n=0

ln
win+1,in

win,in+1

= ln
πi0

πiN

+
∑
i<j

φij ln
wij

wji

,
�

(10)

with long-time average Σ = limT→∞〈σ〉/T , and where φij is the net number of trans
itions from j → i over the course of the trajectory γ:

φij =
N−1∑
n=0

(
δi,in+1δj,in − δj,in+1δi,in

)
.� (11)

Here, the auxiliary generator is simply the same as the original: plugging W̄ = W into 
(9) leads to the total entropy production σ in (10): σ = ln(P [γ]/P [γ̃]).

An alternative formulation that will shed light on our discussion of partial entropy 
productions is to utilize a special auxiliary dynamics called the dual process whose gen-
erator implements time-reversal [36, 37],

W̄ dual
ij =

{
wji

πi

πj
i �= j

−λi i = j
,� (12)

which ‘twists’ all the transition rates with a weight πi/πj. These dynamics have the 
special property that they generate the reverse trajectories with the same probabilities 
as the original process: P̄dual[γ] = P [γ̃]. As such, the total entropy production can be 
alternatively derived as σ = ln(P [γ]/P [γ̃]) = ln(P [γ]/P̄dual[γ]).

3. Partial entropy production

Calculating the total entropy production, according to (10), requires complete knowl-
edge of the system dynamics; an external observer needs to record every step of a 
trajectory. However, all this information is not always readily available, requiring the 
development of partial entropy productions.

In this section, we compare and contrast two fluctuating partial entropy produc-
tions both of which satisfy integral fluctuation theorems. To keep the discussion as con-
crete as possible, we specialize to a system at steady state, where the observer can only 
monitor two states, 1 and 2, and transitions between them (figure 1(a)). In particular, 

https://doi.org/10.1088/1742-5468/aa8c0d


Hierarchical bounds on entropy production inferred from partial information

7https://doi.org/10.1088/1742-5468/aa8c0d

J. S
tat. M

ech. (2017) 093210

they can only measure (or calculate), the steady state probabilities of the observed 
states, π1 and π2, and the average rate of jumps between them, w21 and w12.

The key insight that allows the development of the fluctuation theorems for both 
partial entropy productions, turns out also to be the unifying perspective. Both par-
tial entropy productions are trajectory observables where the auxiliary generator is 
obtained by twisting a subset of the transitions; namely, the hidden transitions [18, 28]

W̄ij =





wij ij = 12, 21

wji
ui

uj
i �= j; ij �= 12, 21

−λ̄i i = j

,� (13)

with each ui > 0, and the λ̄i chosen to enforce probability conservation. As we will see, 
the choice of u determines the partial entropy production.

3.1. Passive partial entropy production

The passive partial entropy production σpp identified by Shiraishi and Sagawa [18] 
takes the form in our restricted setup

σpp = φ12 ln
w12π2

w21π1

−
(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
,� (14)

where Tj is the total fluctuating time spent in state j over the course of a trajectory. 
This definition should be compared with that introduced by Hartich, Barato and Seifert 
[27], which has a plus sign in front of the parenthesis. The physical significance of (14) 
is most apparent if we look at the average entropy production rate in the steady-state 
limit

Σpp = lim
T→∞

1

T
〈σpp〉 = Jπ

12 ln
w12π2

w21π1

� 0,� (15)

where we have used the ergodicity assumption that within this limit Tj/T  converges to 
πj, and φij/T  converges to Jπ

ij. Upon comparison with the average total entropy produc-
tion (7), we see this is simply the contribution coming just from transitions between 
states 1 and 2; a natural choice for the partial entropy production.

The fluctuation theorem for (14) arises from an auxiliary process where the twisting 
parameters are simply the steady-state probabilities, ui = πi [18]:

W̄ pp
ij =





wij ij = 12, 21

wji
πi

πj
i �= j; ij �= 12, 21

−λ̄i i = j

,� (16)

with modified exit rates that guarantee conservation of probability

λ̄i =

{
λi +

1
πi

∑
j �=1,2 J

π
ij i = 1, 2

λi i �= 1, 2
.� (17)

See appendix A for a detailed derivation. In essence, the twisting generates the reverse 
dynamics (see (12)) on the hidden states.

https://doi.org/10.1088/1742-5468/aa8c0d
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3.2.  Informed partial entropy production

The informed partial entropy production requires an additional assumption [28], that 
the observer can tune the observed transition rates, w12(x) and w21(x), by varying an 
external control parameter or force x. As we will see, this additional freedom allows one 
to identify and measure an alternative notion of partial entropy production.

Let us denote the parameter-dependent generator as W(x), which is assumed to 
have a unique steady state distribution π(x) for every value of x. Now, the informed 
partial entropy production is based on the observation that there is a special value of 
the control parameter where the steady-state current on the 1− 2 transition is zero, 
which we call the stalling force xst: w12(x

st)π2(x
st)− w21(x

st)π1(x
st) = 0. This lack of 

current immediately connects the stalling steady-state distribution to the transition 
rates in a simple way:

w12(x
st)

w21(xst)
=

π1(x
st)

π2(xst)
≡ πst

1

πst
2

.� (18)

Mathematically, the distribution πst can be obtained as the steady-state of a modified 
generator Wst with the 1− 2 transitions removed: Wstπst = 0. This is apparent, since 
πst represents the steady-state with vanishing current (no net transitions 1 ↔ 2), which 
can be enforced simply by setting w12 = w21 = 0, as illustrated in figure 2. Details are 
in appendix B.

Now, the informed partial entropy production σip (for any value of x) is defined 
in a manner akin to (14), except using the stalling distribution [28], here extended to 
transient trajectories,

σip = ln
πi0π

st
iN

πiNπ
st
i0

+ φ12 ln
w12π

st
2

w21πst
1

,� (19)

with average steady-state rate

Σip = lim
T→∞

1

T
〈σip〉 = Jπ

12 ln
w12π

st
2

w21πst
1

.� (20)

The rationale behind this definition has a profound physical significance. This entropy 
production is predicated on an eective thermodynamic description of the system as 

Figure 1.  Illustration of partially observed thermodynamics: (a) An observer can 
measure the currents and probabilities for the 1− 2 link, whereas the rest of the 
system is hidden. (b) The observer can assign an eective description to the hidden 
part by collapsing the hidden network to one eective transition with rates r.

https://doi.org/10.1088/1742-5468/aa8c0d
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perceived by the observer. In eect, the observer sees a nontrivial eective thermody-
namic force [28]

F st = ln
w12π

st
2

w21πst
1

.� (21)

This description is consistent with a minimal model that captures the observed steady-
state dynamics by collapsing the hidden part of the network to a single transition with 
parameter-independent rates (as depicted in figure 1(b)):

r21
r12

=
πst
2

πst
1

� (22)

which are defined to maintain the correct steady-state density for every parameter 
value:

w12(x) + r12
w21(x) + r21

=
π1(x)

π2(x)
.� (23)

Importantly, the rates r are uniquely defined and can be determined from Wst, inde-
pendent of x (see appendix B) [28].

Underlying the identification of (19) as an entropy production, is an integral 
fluctuation theorem. Here we choose the twisting parameters to be the stalling distri-
bution, ui = πst

i  [28]:

W̄ ip
ij =





wij ij = 12, 21

wji
πst
i

πst
j

i �= j; ij �= 12, 21

−λi i = j

,� (24)

where remarkably the exit rates λi are unmodified (See appendix A for details). In fact, 
this property singles out the twisting ui = πst

i  as unique.

3.3. Summary

Ultimately, the formal structure of the two partial entropy productions are the same. 
Both verify integral fluctuation theorems obtained by twisting the generator on the 
hidden network with a normalized probability distribution. However, the physical 
significance of the two entropy productions are distinct, owing to the two dierent 
choices of twistings. In the following, we will explore their relationship.

4. Entropy production decomposition

So far, we have laid out the two dierent approaches for assigning entropy production 
to a single observable link and the corresponding fluctuation theorems. Further insight 
into their comparison comes from analyzing the complementary entropy production in 
the hidden part of the network.

https://doi.org/10.1088/1742-5468/aa8c0d
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4.1. Passive partial entropy production

According to [18], the hidden part of the entropy production, σpp,c ≡ σ − σpp—with  
‘c’ standing for complement—satisfies a fluctuation theorem. Meaning, it can be writ-
ten as the logratio between two trajectory probability distributions. However, one has 
to define a new auxiliary process analogously to the definition in (16), except treating 
the 1− 2 link as hidden [18]:

W̄ pp,c
ij =





wji
πi

πj
ij = 12, 21

wij i �= j, ij �= 12, 21

−λ̄c
i i = j

,� (25)

with modified exit rates chosen to conserve probability,

λ̄c
i =





λ1 +
1
π1
Jπ
12 i = 1

λ2 +
1
π2
Jπ
21 i = 2

λi i �= 1, 2

.� (26)

This construction naturally leads to a trajectory observable (see equation (9))

σpp,c = ln
P [γ]

P̄pp,c[γ̃]

=
∑
i<j

(i,j) �=(1,2)

φij ln
wijπj

wjiπi

+

(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
,

� (27)

with average rate

Σpp,c = lim
T→∞

1

T
〈σpp,c〉 =

∑
i<j

(i,j) �=(1,2)

Jπ
ij ln

wijπj

wjiπi

.
� (28)

Thus, this complementary entropy production is simply the entropy production arising 
from all the hidden transitions. See appendix C for a derivation.

Figure 2.  Illustration of the stalling distribution: at the stalling force, the current 
over the observed 1–2 link vanishes, leading to a stalling steady-state distribution 
π(xst) (left). This situation is analogous to having zero rates on the observed link 
(i.e. removing it completely), leading to the same steady-state distribution (right).

https://doi.org/10.1088/1742-5468/aa8c0d
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From their trajectory definitions, (14) and (27), it is straightforward to check that 
indeed (see appendix D):

σ = σpp + σpp,c.� (29)
The fact that such a decomposition exists is perhaps more surprising, when we reframe 
this equation using logratios of trajectory distributions

ln
P [γ]

P [γ̃]︸ ︷︷ ︸
σ

= ln
P [γ]

P̄pp[γ̃]︸ ︷︷ ︸
σpp

+ ln
P [γ]

P̄pp,c[γ̃]︸ ︷︷ ︸
σpp,c

.
� (30)

This decomposition requires the conclusion that the auxiliary processes verify

P [γ]

P̄pp,c[γ̃]
=

P̄pp[γ̃]

P [γ̃]
.� (31)

Meaning, the hidden auxiliary process interchanges the ratio of distributions; a rather 
unique time-reversal-like structure.

4.2.  Informed partial entropy production

Polettini and Esposito did not derive a complementary entropy production in their 
original work [28]. Such a decomposition though is possible, as we show in this section, 
which constitutes our first main result.

Remarkably, the situation is much simpler here as we do not need to define a new 
auxiliary process. Instead, the complementary informed partial entropy production can 
be deduced by considering

σip,c = ln
P [γ]

P̄ ip[γ]
=

N−1∑
n=0

ln
win+1,in

w̄in+1,in

,� (32)

where both trajectory distributions are evaluated on the same trajectory. Since the rates 
over the 1− 2 link are unaltered in the auxiliary generator Wip (see equation (24)), the 
only contributions to the sum are from jumps over the hidden transition:

σip,c = ln
P [γ]

P̄ ip[γ]
=

∑
i<j

(i,j)�=(1,2)

φij ln
wijπ

st
j

wjiπst
i

.
� (33)

Summing up the contributions of the observed and hidden parts, it is straightforward 
to verify that (see appendix D):

σ = σip + σip,c.� (34)
In terms of the trajectory distributions, this decomposition rests on the remarkable 

property of the auxiliary process

P [γ]

P̄ ip[γ]
=

P̄ ip[γ̃]

P [γ̃]
.� (35)

Time reversing flips the ratio of probabilities. The essential feature that allows for such 
a unique property (and decomposition) is the fact that the escape rates are unaltered 

https://doi.org/10.1088/1742-5468/aa8c0d
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in the auxiliary dynamics. As pointed out in [33], and manifested in (9), ratios between 
trajectory probabilities generated from two distinct dynamics include terms like the last 
term in (9) corresponding to the dierence in escape rates, or the trac, between the 
dynamics. This is precisely the source of the expression in parenthesis in the definition 
of σpp in (14), which depends on waiting times. Generically, this term hinders a simple 
and elegant decomposition using a single auxiliary process. The dierent auxiliary pro-
cess we had to introduce for the hidden part of the passive partial entropy production 
(25), also had dierent escape rates with respect to the original dynamics. The under-
lying reason was so that the trac terms in the definitions of σpp,c and σpp canceled, 
rendering their sum the total entropy production. In contrast, for the informed partial 
entropy production, the same auxiliary process was used to recover both the observed 
and hidden parts of the total entropy production, neither of which included a trac 
term. As pointed out in the previous section, this feature distinguishes the definition of 
the auxiliary process for the informed partial entropy production.

Let us note that a similar utilization of a single auxiliary process with escape rates 
identical to the original dynamics was employed to decompose the total entropy pro-
duction for driven dynamics into adiabatic and non-adiabatic parts [29]. There too, the 
decomposition was facilitated by the fact that the trajectory probability ratios did not 
include contributions from dierences in the diagonal elements of the generator matrices.

4.3. Summary

We emphasize that we have two decompositions of the total entropy production into 
a pair of positive (on average) parts that each verify an integral fluctuation theorem. 
Underlying these decompositions are a pair of auxiliary processes that share special 
symmetry properties with the original dynamics under time-reversal. However, the 
informed partial entropy production is singled out by the property that its auxiliary 
generator maintains the escape rates, implying the partial entropy production and its 
complement can be constructed from ratios of a pair of trajectories, either forward or 
reverse, generated from the same dynamics.

One consequence of this profusion of entropic measures is that we now have four 
distinct lower bounds on the average entropy production 〈σ〉:

〈σ〉 � {〈σpp〉, 〈σpp,c〉, 〈σip〉, 〈σip,c〉}.� (36)

In the following section, we rationalize this structure, by demonstrating a hierarchy of 
entropy productions.

5. Entropy production hierarchy

The partial entropy productions assigned to a single observed link both satisfy int
egral fluctuation theorems and provide a lower bound on the total entropy production. 
In this section, we compare these two expressions, showing that the informed partial 
entropy production is always greater owing to the additional physical information 
incorporated in its definition. We will focus on the average entropy production rates 
for both cases, Σip and Σpp, which dominate in the long time limit.

https://doi.org/10.1088/1742-5468/aa8c0d
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To deduce an inequality between Σip and Σpp, we consider their dierence

Σip − Σpp = (w12π2 − w21π1) ln
πst
2 π1

πst
1 π2

.� (37)

According to (23), we have that

w12π2 − w21π1 = r21π1 − r12π2.� (38)
Substituting (22) and (38) into (37) leads to

Σip − Σpp = (r12π2 − r21π1) ln
r12π2

r21π1

� 0,� (39)

with positivity due to the convexity of the logarithm, (x− y) ln(x/y) � 0.
Combined with our previous results, we have an entropy production hierarchy:

〈σ〉 � 〈σip〉 � 〈σpp〉 � 0,� (40)

which is our second main result. Consequently, 〈σip〉 oers a better estimate of the 
total dissipation in the system whenever only partial information is available. However, 
determining 〈σip〉 requires additional input as compared to 〈σpp〉; namely, knowledge of 
the stationary stalling probabilities of the two observed states. We stress that the stall-
ing distribution can be obtained by manipulating the observed transition solely, with-
out having to aect the hidden part of the network. Tuning the rates of the observed 
link in order to find the stalling probabilities might not always be readily attainable. 
However, in situations where it is possible, there is a true gain in obtaining these data.

6. Partial information can be complete

In addition to being a better estimate of the total entropy production, we have found 
that in unicyclic systems, as in figure 3, the informed partial entropy production can 
saturate the hierarchy inequality (40) and provide the entire dissipation, which is our 
third main result.

In a unicyclic network, probability conservation requires that the steady-state cur
rent along every link is equal:

wi,i−1πi−1 − wi−1,iπi = wi+1,iπi − wi,i+1πi+1.� (41)
Hence, at stalling conditions, in addition to the vanishing of the current over the 
observed link, the currents over all the hidden transitions are zero as well, and the 
system is actually at equilibrium. Thus, at stalling, the ratio between the stalling prob-
ability distributions of states 1 and 2 simplifies to

πst
2

πst
1

=
w23 · · ·wK1

w32 · · ·w1K

,� (42)

which is a manifestation of detailed balance. Multiplying by the ratio of rates over the 
observed link w12/w21, gives the eective thermodynamic force of the informed partial 
entropy framework

https://doi.org/10.1088/1742-5468/aa8c0d
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F st = ln
w12π

st
2

w21πst
1

= F cycle,� (43)

which equals the cycle anity of the entire unicylcic network [38]. Hence,

Σip = Jπ
12F

st = Jπ
12F

cycle = Σ.� (44)

The example of the unicycle network clearly demonstrates an advantage of using 
the approach of Polettini and Esposito [28] in the case where only partial information is 
available and only a single link can be observed. When the network contains no hidden 
cycles, extracting the stalling distribution of the two observed states is equivalent to 
having a complete information of the total entropy production in the system, rendering 
it the best inference strategy.

7. Time-dependent partial entropy production

Having discussed some of the advantages of the informed partial entropy production 
[28], we extend this approach to driven processes where rates are explicitly time depen-
dent. Specifically, we take the rates of the observed link to be time dependent through 
an external parameter protocol X = {xt}Tt=0, i.e. w12(t) ≡ w12(xt) and w21(t) ≡ w21(xt), 
whereas the rates of all the other transitions remain fixed. In this case, the stalling 
distribution does not depend on time and the derivation of the fluctuation theorems for 
both the observed partial entropy production and the hidden entropy production carry 
through essentially unaltered.

To quote the result, let us introduce the instantaneous current φij(t), counting the 
net number of jumps over each link as a function of time [39],

φij(t) =
N−1∑
n=0

δ(t− tn)(δi,in+1δj,in − δj,in+1δi,in),� (45)

where the system jumps from state in to state in+1 at time tn. Generalizing the definition 
of the partial entropy production along a trajectory to include the time dependency 
gives

σip = ln
πi0π

st
iN

πiNπ
st
i0

+

∫ T

0

dt φ12(t) ln
w12(t)π

st
2

w21(t)πst
1

.� (46)

The corresponding fluctuation theorem is obtained by defining a time-dependent aux-
iliary process (see equation (24)):

W ip
ij (t) =





wij(t) ij = 12, 21

wji
πst
i

πst
j

i �= j; ij �= 12, 21

−λi(t) i = j = 1, 2

−λi i = j �= 1, 2

.� (47)

The derivation is similar to the time-independent case.
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The complementary entropy production σip,c depends only on the rates of the unob-
served link, and hence, does not change in this case.

8. Numerical simulations

In order to illustrate our results, we randomly chose a single generator matrix W 
for a 4-state system (figure 4(a)), and numerically computed both the passive and 
informed partial entropy production rates, as well as the total entropy production 
rate for comparison. In our example, we observe the 1− 2 link with the rest of the 
network hidden.

The calculations were carried out for a set of such generator matrices, where we 
tuned the rates over the observed link with a control parameter x, w12(x) = w12e

x, and 
w21(x) = w21e

−x, where w12 and w21 are the original rates of W. The range of values of 
the control parameter x included the stalling force xst, which can be calculated in this 
case according to equation (18),

xst =
1

2
ln

w21π
st
1

w12πst
2

.� (48)

The results, depicted in figure 4(b), elucidate the entropy production hierarchy, and 
demonstrate that the informed partial entropy production rate is a better estimate of 
the total entropy production rate compared to the passive one. A clear limitation of 
both approaches is that an external observer cannot obtain a lower bound on the total 
entropy production at stalling conditions.

Further, in order to demonstrate that the informed partial entropy production 
can exactly predict the total entropy production for unicyclic networks, we used 
the same generator W (with x = 0), and tuned the hidden link 2− 4 according to 
w24(y) = w24 sin

2(y) and w42(y) = w42 sin
2(y), where w24 and w42 are the original entries 

of the generator matrix. For y = 0, the network becomes a single cycle. As can be 
seen in figure 4(c), the informed partial entropy production rate converges to the total 
entropy production for y = 0.

Figure 3.  Illustration of a unicyclic network with K states: transitions between 
states 1 and 2 are observed, whereas all other transitions are hidden (depicted as 
gray dashed edges).

https://doi.org/10.1088/1742-5468/aa8c0d
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We have studied two notions of entropy production with partial information. Their 
associated integral fluctuation theorems can be seen from one unifying perspective: 
each is obtained by comparing the system’s dynamics to an auxiliary process that, in 
a manner of speaking, implements time-reversal on the unobserved part of the system. 
Despite this similarity, the extra content embodied in the informed partial entropy 
production allows one to capture more of the underlying dissipation. The main chal-
lenge of this approach, however, is that the stalling force may be dicult to access in 
an experimental setup: isolating precise control of the transition rates only over the 
observed link may not be possible, as one might expect, for example, when monitor-
ing a complex chemical reaction network within a living cell. When it is applicable, 

Figure 4.  Entropy production rate with partial information: (a) Network of states 
for a 4-state Markov process with generator W where link 1–2 is observed. Passive 
(blue dashed curve), informed (red dotted-dashed curve), and total entropy 
production rates (solid yellow) with (b) w12(x) = w12e

x, and w21(x) = w12e
−x. Inset: 

y-axis with logarithmic scale. (c) w24(y) = w24 sin
2(y) and w42(y) = w42 sin

2(y). 
Entries of the generator matrix are: w12 = 9, w13 = 0, w14 = 2, w21 = 1, w23 = 4, 
w24 = 6, w31 = 0, w32 = 10, w34 = 5, w41 = 7, w42 = 1, w43 = 8, where the diagonal 
elements were chosen to have zero-sum columns. The control parameters are 
y = π/2 in (b) and x = 0 in (c).
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however, the informed partial entropy production oers a better estimate of the total 
entropy production rendering it a more useful inference tool; especially, for unicyclic 
networks where it captures all of the entropy production.

Furthermore, in this work, we have extended the utility of the informed partial 
entropy production of Polettini and Esposito. We have included the possibility of 
transient relaxation to the steady-state and driven nonautonomous processes, as well 
as developed a fluctuation theorem for the complementary entropy production in the 
unobserved subsystem.

To conclude, let us take a broader view of what has been discussed. We have seen 
two dierent ways the total entropy production can be decomposed into two positive 
pieces that each verify a fluctuation theorem. This is actually quite a remarkable prop-
erty. To appreciate this, let us try and decompose the total fluctuating entropy produc-
tion in a similar manner by introducing an arbitrary auxiliary trajectory distribution 
Q:

σ = ln
P [γ]

P [γ̃]
= ln

P [γ]

Q[γ̃]
+ ln

Q[γ̃]

P [γ̃]
.� (49)

The first term as a ratio of trajectory probabilities with P  in the numerator will satisfy 
a fluctuation theorem and will be positive on average: 〈ln(P/Q)〉P � 0, as it is the rela-
tive entropy between P  and Q. The same cannot be said for the second term, because 
the original distribution P  is in the denominator. However, the second term could be 
linked to an integral fluctuation theorem, under a very special condition that

Q[γ̃]

P [γ̃]
=

P [γ]

R[γ∗]
,� (50)

for some possibly dierent trajectory distribution R, with γ∗ either the original for-
ward trajectory γ or its time reverse γ̃. For the passive partial entropy production, 
R turns out to be the symmetrical auxiliary process where the hidden part of the 
network becomes the observed part evaluated on the time-reverse trajectory (31). For 
the informed partial entropy production, the auxiliary trajectory distribution remains 
unchanged, R = Q, and is evaluated on the forward trajectory (35). Identifying the 
general class of trajectory distributions for which the symmetry in (50) holds, and thus 
allow a decomposition of the total entropy production into a pair of positive pieces that 
individually verify integral fluctuation theorems remains an open question. However, 
understanding members of this class, as demonstrated in this work, can reveal deeper 
structure in the thermodynamics of nonequilibrium systems.
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Appendix A. Full derivation of the partial entropy fluctuation theorems

A.1. Passive partial entropy production

We start with the fluctuation theorem for the passive partial entropy production accord-
ing to the approach of Shiraishi and Sagawa [18]. The transient fluctuation theorem is 
derived from the trajectory probabilities

ln
P [γ]

P̄pp[γ̃]
= ln

πi0

πiN

+
N−1∑
n=0

ln
win+1,in

w̄in,in+1

+
N∑

n=0

ln
e−λinτin

e−λ̄inτin
,

� (A.1)
where we have assumed that the initial conditions of the auxiliary and original pro-
cesses are sampled from the same steady-state distribution. Next, we use the fact that

N−1∑
n=0

ln
πin

πin+1

= ln
πi0

πiN

,

� (A.2)
to get

ln
P [γ]

P̄pp[γ̃]
=

N−1∑
n=0

ln
win+1,inπin

w̄in,in+1πin+1

−
N∑

n=0

(λin − λ̄in)τin

= φ12 ln
w12π2

w21π1

−
N∑

n=0

{
(λ1 − λ̄1)δin,1τin + (λ2 − λ̄2)δin,2τin

}
,

�
(A.3)

where φ12 is the total integrated current over the 1–2 link, counting the net number 
of jumps from 2 to 1. Let us define T1 to be the total time spent in state 1 along the 

trajectory T1 =
∑N

n=0 δin,1τin, and similarly, T2 is the total time spent in state 2. Then 
according to (17) and the fact that at steady state 

∑
j �=i J

π
ij = 0, we have

λ1 − λ̄1 = − 1

π1

∑
j �=1,2

Jπ
1j = − 1

π1

∑
j �=1

Jπ
1j

︸ ︷︷ ︸
=0

+
Jπ
12

π1

=
Jπ
12

π1

.
� (A.4)

Similarly

λ2 − λ̄2 =
Jπ
21

π2

.� (A.5)

Allowing us to conclude that

ln
P [γ]

P̄pp[γ̃]
= φ12 ln

w12π2

w21π1

−
(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
,

� (A.6)
which completes the derivation.

A.2.  Informed partial entropy production

Let us now focus on the fluctuation theorem for the informed partial entropy produc-
tion according to the approach of Polettini and Esposito [28]. The transient fluctuation 
theorem is derived from the trajectory probabilities
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ln
P [γ]

P̄ ip[γ̃]
= ln

πi0

πiN

+
N−1∑
n=0

ln
win+1,in

w̄in,in+1

,

�

(A.7)

where we have assumed that the initial condition of the auxiliary process is sampled 
from the same distribution as the original process. Next, similarly to the telescoping 
cancelation in (A.2), we use the fact that

N−1∑
n=0

ln
πst
in

πst
in+1

= ln
πst
i0

πst
iN

�

(A.8)

to get

ln
P [γ]

P̄ ip[γ̃]
= ln

πi0π
st
iN

πiNπ
st
i0

+
N−1∑
n=0

ln
win+1,inπ

st
in

w̄in,in+1π
st
in+1

= ln
πi0π

st
iN

πiNπ
st
i0

+ φ12 ln
w12π

st
2

w21πst
1

,

�

(A.9)

which completes the derivation.

Appendix B. Proof of the derivation of the stalling distribution

The proof of (18) is based on the deletion-contraction formula [28], where we denote by 
W(m1,...,mk|n1,...,nk) the matrix obtained from W by removing the rows {m1, ...,mk} and 
columns {n1, ..., nk}:

π1(x)

π2(x)
=

w12(x) detW(1,2|1,2) + detWst
(2|1)

w21(x) detW(1,2|1,2) + detWst
(1|2)

.� (B.1)

At the stalling force xst, we thus have

π1(x
st)

π2(xst)
=

w12(x
st) +

detWst
(2|1)

detW(1,2|1,2)

w21(xst) +
detWst

(1|2)
detW(1,2|1,2)

=
detWst

(2|1)

detWst
(1|2)

,� (B.2)

where for the second equality we used the fact that by definition, the current over the 
observed link is zero for xst:

π1(x
st)

π2(xst)
=

w12(x
st)

w21(xst)
.� (B.3)

On the other hand, applying the formula in equation (B.1) to the steady state distribu-
tion of the stalling matrix Wst gives

πst
1

πst
2

=
detWst

(2|1)

detWst
(1|2)

,� (B.4)

which proves equation (18).
Let us note, that (B.2) also defines the rates

r12 =
detWst

(2|1)

detW(1,2|1,2)
, r21 =

detWst
(1|2)

detW(1,2|1,2)
.� (B.5)
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Appendix C. Full derivation of the passive hidden entropy production  
fluctuation theorem

We compare the natural logarithm of the forward trajectory generated by W and the 
time-reversed trajectory generated by W̄

pp,c
 to obtain the passive hidden entropy pro-

duction in accordance with the approach of Shiraishi and Sagawa [18],

ln
P [γ]

P̄pp,c[γ̃]
= ln

πi0

πiN

+
N−1∑
n=0

ln
win+1,in

w̄in,in+1

+
N∑

n=0

ln
e−λinτin

e−λ̄inτin
.� (C.1)

We now use the fact that in the definition of W̄
pp,c

 (25), only the rates corresponding 
to transitions over the 1− 2 link are ‘twisted’, whereas the rest of the rates remain 
unaltered. Hence, the second term in the right hand side of (C.1) can be split into two 
contributions

ln
P [γ]

P̄pp,c[γ̃]
= ln

πi0

πiN

+ φ12 ln
π1

π2

+
∑
i<j

(i,j)�=(1,2)

φij ln
wij

wji

−
N∑

n=0

{
(λ1 − λ̄1)δin,1τin + (λ2 − λ̄2)δin,2τin

}

= ln
πi0

πiN

+ φ12 ln
π1

π2

+
∑
i<j

(i,j)�=(1,2)

φij ln
wij

wji

−
{
T1(λ1 − λ̄1) + T2(λ2 − λ̄2)

}

�

(C.2)

where we have used the fact that only the escape rate of states 1 and 2 dier between 
W and W̄

pp, c
, and the definition of T1 and T2 as the total time spent in the corre

sponding states along the trajectory. Plugging in the dierence in escape rates (26), we 
find

ln
P [γ]

P̄pp,c[γ̃]
= ln

πi0

πiN

+ φ12 ln
π1

π2

+
∑
i<j

(i,j)�=(1,2)

φij ln
wij

wji

+

(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
.

� (C.3)

We finally use the telescoping sum in (A.2) to combine the first two terms with the 
third,

ln
P [γ]

P̄pp,c[γ̃]
=

∑
i<j

(i,j)�=(1,2)

φij ln
wijπj

wjiπi

+

(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
= σpp,c.

� (C.4)

Appendix D. Full derivation of the entropy production decomposition

D.1. Passive partial entropy production

Let us sum the contributions to the entropy production from both the observed link 
and the hidden part according to the passive partial entropy production approach,

σpp + σpp,c = φ12 ln
w12π2

w21π1

−
(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)

+
∑
i<j

(i,j)�=(1,2)

φij ln
wijπj

wjiπi

+

(
Jπ
12

T1

π1

+ Jπ
21

T2

π2

)
.

�
(D.1)
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We immediately see that the trac terms (last terms in the first and second lines, 
respectively) cancel each other. This is exactly the reason for needing a dierent aux-
iliary W̄

pp,c
 process for the hidden dynamics—to cancel the term resulting from the 

dierence in escape rates in the original auxiliary process W̄
pp

. Combining the remain-
ing terms we complete the derivation of the entropy production decomposition:

σpp + σpp,c =
∑
i<j

φij ln
wijπj

wjiπi

= ln
πi0

πiN

+
∑
i<j

φij ln
wij

wji

= σ.
� (D.2)

D.2.  Informed partial entropy production

We sum the contributions of the informed partial entropy production of the observed 
and hidden parts:

σip + σip,c = ln
πi0π

st
iN

πiNπ
st
i0

+ φ12 ln
w12π

st
2

w21πst
1

+
∑
i<j

(i,j)�=(1,2)

φij ln
wijπ

st
j

wjiπst
i

.
� (D.3)

The second and third term on the right hand side of (D.3) can be combined to a single 
sum, without the restriction on (i, j) �= (1, 2):

σip + σip,c = ln
πi0π

st
iN

πiNπ
st
i0

+
∑
i<j

φij ln
wijπ

st
j

wjiπst
i

.� (D.4)

Now, the sum over ratios of stationary probabilities in the second term of (D.4), cancels 
telescopically (see (A.8)), except for initial and final contributions, which also cancel 
with the reciprocal ratio appearing in the first term:

σip + σip,c = ln
πi0

πiN

+
∑
i<j

φij ln
wij

wji

= σ,
� (D.5)

which completes the proof.
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